Canonical bases and higher representation theory

This paper develops a general theory of canonical bases and how they arise naturally in the context of categorification. As an application, we show that Lusztig’s canonical basis in the whole quantized universal enveloping algebra is given by the classes of the indecomposable 1-morphisms in a catego...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2015-01, Vol.151 (1), p.121-166
1. Verfasser: Webster, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a general theory of canonical bases and how they arise naturally in the context of categorification. As an application, we show that Lusztig’s canonical basis in the whole quantized universal enveloping algebra is given by the classes of the indecomposable 1-morphisms in a categorification when the associated Lie algebra is of finite type and simply laced. We also introduce natural categories whose Grothendieck groups correspond to the tensor products of lowest- and highest-weight integrable representations. This generalizes past work of the author’s in the highest-weight case.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X1400760X