Entropic risk minimization for nonparametric estimation of mixing distributions

We discuss a nonparametric estimation method for the mixing distributions in mixture models. The problem is formalized as a minimization of a one-parameter objective functional, which becomes the maximum likelihood estimation or the kernel vector quantization in special cases. Generalizing the theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2015-04, Vol.99 (1), p.119-136
Hauptverfasser: Watanabe, Kazuho, Ikeda, Shiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss a nonparametric estimation method for the mixing distributions in mixture models. The problem is formalized as a minimization of a one-parameter objective functional, which becomes the maximum likelihood estimation or the kernel vector quantization in special cases. Generalizing the theorem for the nonparametric maximum likelihood estimation, we prove the existence and discreteness of the optimal mixing distribution and provide an algorithm to calculate it. It is demonstrated that with an appropriate choice of the parameter, the proposed method is less prone to overfitting than the maximum likelihood method. We further discuss the connection between the unifying estimation framework and the rate-distortion problem.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-014-5467-7