Methods of simulating thin film deposition using spray pyrolysis techniques
[Display omitted] •A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air p...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2014-04, Vol.117, p.57-66 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | |
container_start_page | 57 |
container_title | Microelectronic engineering |
container_volume | 117 |
creator | Filipovic, Lado Selberherr, Siegfried Mutinati, Giorgio C. Brunet, Elise Steinhauer, Stephan Köck, Anton Teva, Jordi Kraft, Jochen Siegert, Jörg Schrank, Franz |
description | [Display omitted]
•A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed.
Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision. |
doi_str_mv | 10.1016/j.mee.2013.12.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677910268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016793171300720X</els_id><sourcerecordid>1677910268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoZs0P6A3Xwq92NFItiXRUwn9CE3IpT0LRR51tdiWq_EW9t9HZkOP7WkY5pl3hoexd8Ab4NDfHJoJsREcZAOi4aJ7xXaglay7rtcXbFcYVRsJ6g27JDrw0rdc79j3B1z3aaAqhYridBzdGudf1bqPcxXiOFUDLoniGtNcHWkb0ZLdqVpOOY0nilSt6Pdz_H1EesteBzcSXr_UK_bzy-cft9_q-8evd7ef7msvjVxrAaEVGstDwbteKQSjDAyqNaJ3A_ZcKPPknrAdTGh1AA0gZBuM6QffSuzkFftwzl1y2u6udorkcRzdjOlItiSXQC56_X-064Ar3uoNhTPqcyLKGOyS4-TyyQK3m2N7sMWx3RxbELY4LjvvX-IdeTeG7GYf6e-i0FL1HZjCfTxzWLT8iZgt-YizxyFm9KsdUvzHlWe2xJEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551070488</pqid></control><display><type>article</type><title>Methods of simulating thin film deposition using spray pyrolysis techniques</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Filipovic, Lado ; Selberherr, Siegfried ; Mutinati, Giorgio C. ; Brunet, Elise ; Steinhauer, Stephan ; Köck, Anton ; Teva, Jordi ; Kraft, Jochen ; Siegert, Jörg ; Schrank, Franz</creator><creatorcontrib>Filipovic, Lado ; Selberherr, Siegfried ; Mutinati, Giorgio C. ; Brunet, Elise ; Steinhauer, Stephan ; Köck, Anton ; Teva, Jordi ; Kraft, Jochen ; Siegert, Jörg ; Schrank, Franz</creatorcontrib><description>[Display omitted]
•A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed.
Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2013.12.025</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; CMOS ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Design. Technologies. Operation analysis. Testing ; Droplets ; Electronics ; Exact sciences and technology ; Film growth ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Integrated circuits ; Level Set ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Nozzles ; Physics ; Production techniques ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Smart gas sensors ; Spray coating techniques ; Spray pyrolysis ; Spray pyrolysis deposition ; Surface treatment ; Thin films ; Tin oxide film ; Topography ; Topography simulation</subject><ispartof>Microelectronic engineering, 2014-04, Vol.117, p.57-66</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</citedby><cites>FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2013.12.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376519$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipovic, Lado</creatorcontrib><creatorcontrib>Selberherr, Siegfried</creatorcontrib><creatorcontrib>Mutinati, Giorgio C.</creatorcontrib><creatorcontrib>Brunet, Elise</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Köck, Anton</creatorcontrib><creatorcontrib>Teva, Jordi</creatorcontrib><creatorcontrib>Kraft, Jochen</creatorcontrib><creatorcontrib>Siegert, Jörg</creatorcontrib><creatorcontrib>Schrank, Franz</creatorcontrib><title>Methods of simulating thin film deposition using spray pyrolysis techniques</title><title>Microelectronic engineering</title><description>[Display omitted]
•A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed.
Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.</description><subject>Applied sciences</subject><subject>CMOS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Droplets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Film growth</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Integrated circuits</subject><subject>Level Set</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nozzles</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Smart gas sensors</subject><subject>Spray coating techniques</subject><subject>Spray pyrolysis</subject><subject>Spray pyrolysis deposition</subject><subject>Surface treatment</subject><subject>Thin films</subject><subject>Tin oxide film</subject><subject>Topography</subject><subject>Topography simulation</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoZs0P6A3Xwq92NFItiXRUwn9CE3IpT0LRR51tdiWq_EW9t9HZkOP7WkY5pl3hoexd8Ab4NDfHJoJsREcZAOi4aJ7xXaglay7rtcXbFcYVRsJ6g27JDrw0rdc79j3B1z3aaAqhYridBzdGudf1bqPcxXiOFUDLoniGtNcHWkb0ZLdqVpOOY0nilSt6Pdz_H1EesteBzcSXr_UK_bzy-cft9_q-8evd7ef7msvjVxrAaEVGstDwbteKQSjDAyqNaJ3A_ZcKPPknrAdTGh1AA0gZBuM6QffSuzkFftwzl1y2u6udorkcRzdjOlItiSXQC56_X-064Ar3uoNhTPqcyLKGOyS4-TyyQK3m2N7sMWx3RxbELY4LjvvX-IdeTeG7GYf6e-i0FL1HZjCfTxzWLT8iZgt-YizxyFm9KsdUvzHlWe2xJEO</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Filipovic, Lado</creator><creator>Selberherr, Siegfried</creator><creator>Mutinati, Giorgio C.</creator><creator>Brunet, Elise</creator><creator>Steinhauer, Stephan</creator><creator>Köck, Anton</creator><creator>Teva, Jordi</creator><creator>Kraft, Jochen</creator><creator>Siegert, Jörg</creator><creator>Schrank, Franz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Methods of simulating thin film deposition using spray pyrolysis techniques</title><author>Filipovic, Lado ; Selberherr, Siegfried ; Mutinati, Giorgio C. ; Brunet, Elise ; Steinhauer, Stephan ; Köck, Anton ; Teva, Jordi ; Kraft, Jochen ; Siegert, Jörg ; Schrank, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>CMOS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Droplets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Film growth</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Integrated circuits</topic><topic>Level Set</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nozzles</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Smart gas sensors</topic><topic>Spray coating techniques</topic><topic>Spray pyrolysis</topic><topic>Spray pyrolysis deposition</topic><topic>Surface treatment</topic><topic>Thin films</topic><topic>Tin oxide film</topic><topic>Topography</topic><topic>Topography simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipovic, Lado</creatorcontrib><creatorcontrib>Selberherr, Siegfried</creatorcontrib><creatorcontrib>Mutinati, Giorgio C.</creatorcontrib><creatorcontrib>Brunet, Elise</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Köck, Anton</creatorcontrib><creatorcontrib>Teva, Jordi</creatorcontrib><creatorcontrib>Kraft, Jochen</creatorcontrib><creatorcontrib>Siegert, Jörg</creatorcontrib><creatorcontrib>Schrank, Franz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipovic, Lado</au><au>Selberherr, Siegfried</au><au>Mutinati, Giorgio C.</au><au>Brunet, Elise</au><au>Steinhauer, Stephan</au><au>Köck, Anton</au><au>Teva, Jordi</au><au>Kraft, Jochen</au><au>Siegert, Jörg</au><au>Schrank, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods of simulating thin film deposition using spray pyrolysis techniques</atitle><jtitle>Microelectronic engineering</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>117</volume><spage>57</spage><epage>66</epage><pages>57-66</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>[Display omitted]
•A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed.
Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2013.12.025</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2014-04, Vol.117, p.57-66 |
issn | 0167-9317 1873-5568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677910268 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences CMOS Cross-disciplinary physics: materials science rheology Deposition Design. Technologies. Operation analysis. Testing Droplets Electronics Exact sciences and technology Film growth General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Integrated circuits Level Set Materials science Metals. Metallurgy Methods of deposition of films and coatings film growth and epitaxy Nozzles Physics Production techniques Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Smart gas sensors Spray coating techniques Spray pyrolysis Spray pyrolysis deposition Surface treatment Thin films Tin oxide film Topography Topography simulation |
title | Methods of simulating thin film deposition using spray pyrolysis techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20of%20simulating%20thin%20film%20deposition%20using%20spray%20pyrolysis%20techniques&rft.jtitle=Microelectronic%20engineering&rft.au=Filipovic,%20Lado&rft.date=2014-04-01&rft.volume=117&rft.spage=57&rft.epage=66&rft.pages=57-66&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2013.12.025&rft_dat=%3Cproquest_cross%3E1677910268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551070488&rft_id=info:pmid/&rft_els_id=S016793171300720X&rfr_iscdi=true |