Methods of simulating thin film deposition using spray pyrolysis techniques

[Display omitted] •A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2014-04, Vol.117, p.57-66
Hauptverfasser: Filipovic, Lado, Selberherr, Siegfried, Mutinati, Giorgio C., Brunet, Elise, Steinhauer, Stephan, Köck, Anton, Teva, Jordi, Kraft, Jochen, Siegert, Jörg, Schrank, Franz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue
container_start_page 57
container_title Microelectronic engineering
container_volume 117
creator Filipovic, Lado
Selberherr, Siegfried
Mutinati, Giorgio C.
Brunet, Elise
Steinhauer, Stephan
Köck, Anton
Teva, Jordi
Kraft, Jochen
Siegert, Jörg
Schrank, Franz
description [Display omitted] •A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed. Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.
doi_str_mv 10.1016/j.mee.2013.12.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677910268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016793171300720X</els_id><sourcerecordid>1677910268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoZs0P6A3Xwq92NFItiXRUwn9CE3IpT0LRR51tdiWq_EW9t9HZkOP7WkY5pl3hoexd8Ab4NDfHJoJsREcZAOi4aJ7xXaglay7rtcXbFcYVRsJ6g27JDrw0rdc79j3B1z3aaAqhYridBzdGudf1bqPcxXiOFUDLoniGtNcHWkb0ZLdqVpOOY0nilSt6Pdz_H1EesteBzcSXr_UK_bzy-cft9_q-8evd7ef7msvjVxrAaEVGstDwbteKQSjDAyqNaJ3A_ZcKPPknrAdTGh1AA0gZBuM6QffSuzkFftwzl1y2u6udorkcRzdjOlItiSXQC56_X-064Ar3uoNhTPqcyLKGOyS4-TyyQK3m2N7sMWx3RxbELY4LjvvX-IdeTeG7GYf6e-i0FL1HZjCfTxzWLT8iZgt-YizxyFm9KsdUvzHlWe2xJEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551070488</pqid></control><display><type>article</type><title>Methods of simulating thin film deposition using spray pyrolysis techniques</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Filipovic, Lado ; Selberherr, Siegfried ; Mutinati, Giorgio C. ; Brunet, Elise ; Steinhauer, Stephan ; Köck, Anton ; Teva, Jordi ; Kraft, Jochen ; Siegert, Jörg ; Schrank, Franz</creator><creatorcontrib>Filipovic, Lado ; Selberherr, Siegfried ; Mutinati, Giorgio C. ; Brunet, Elise ; Steinhauer, Stephan ; Köck, Anton ; Teva, Jordi ; Kraft, Jochen ; Siegert, Jörg ; Schrank, Franz</creatorcontrib><description>[Display omitted] •A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed. Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2013.12.025</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; CMOS ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Design. Technologies. Operation analysis. Testing ; Droplets ; Electronics ; Exact sciences and technology ; Film growth ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Integrated circuits ; Level Set ; Materials science ; Metals. Metallurgy ; Methods of deposition of films and coatings; film growth and epitaxy ; Nozzles ; Physics ; Production techniques ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Smart gas sensors ; Spray coating techniques ; Spray pyrolysis ; Spray pyrolysis deposition ; Surface treatment ; Thin films ; Tin oxide film ; Topography ; Topography simulation</subject><ispartof>Microelectronic engineering, 2014-04, Vol.117, p.57-66</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</citedby><cites>FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2013.12.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28376519$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipovic, Lado</creatorcontrib><creatorcontrib>Selberherr, Siegfried</creatorcontrib><creatorcontrib>Mutinati, Giorgio C.</creatorcontrib><creatorcontrib>Brunet, Elise</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Köck, Anton</creatorcontrib><creatorcontrib>Teva, Jordi</creatorcontrib><creatorcontrib>Kraft, Jochen</creatorcontrib><creatorcontrib>Siegert, Jörg</creatorcontrib><creatorcontrib>Schrank, Franz</creatorcontrib><title>Methods of simulating thin film deposition using spray pyrolysis techniques</title><title>Microelectronic engineering</title><description>[Display omitted] •A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed. Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.</description><subject>Applied sciences</subject><subject>CMOS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Droplets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Film growth</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Integrated circuits</subject><subject>Level Set</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nozzles</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Smart gas sensors</subject><subject>Spray coating techniques</subject><subject>Spray pyrolysis</subject><subject>Spray pyrolysis deposition</subject><subject>Surface treatment</subject><subject>Thin films</subject><subject>Tin oxide film</subject><subject>Topography</subject><subject>Topography simulation</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVJoZs0P6A3Xwq92NFItiXRUwn9CE3IpT0LRR51tdiWq_EW9t9HZkOP7WkY5pl3hoexd8Ab4NDfHJoJsREcZAOi4aJ7xXaglay7rtcXbFcYVRsJ6g27JDrw0rdc79j3B1z3aaAqhYridBzdGudf1bqPcxXiOFUDLoniGtNcHWkb0ZLdqVpOOY0nilSt6Pdz_H1EesteBzcSXr_UK_bzy-cft9_q-8evd7ef7msvjVxrAaEVGstDwbteKQSjDAyqNaJ3A_ZcKPPknrAdTGh1AA0gZBuM6QffSuzkFftwzl1y2u6udorkcRzdjOlItiSXQC56_X-064Ar3uoNhTPqcyLKGOyS4-TyyQK3m2N7sMWx3RxbELY4LjvvX-IdeTeG7GYf6e-i0FL1HZjCfTxzWLT8iZgt-YizxyFm9KsdUvzHlWe2xJEO</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Filipovic, Lado</creator><creator>Selberherr, Siegfried</creator><creator>Mutinati, Giorgio C.</creator><creator>Brunet, Elise</creator><creator>Steinhauer, Stephan</creator><creator>Köck, Anton</creator><creator>Teva, Jordi</creator><creator>Kraft, Jochen</creator><creator>Siegert, Jörg</creator><creator>Schrank, Franz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140401</creationdate><title>Methods of simulating thin film deposition using spray pyrolysis techniques</title><author>Filipovic, Lado ; Selberherr, Siegfried ; Mutinati, Giorgio C. ; Brunet, Elise ; Steinhauer, Stephan ; Köck, Anton ; Teva, Jordi ; Kraft, Jochen ; Siegert, Jörg ; Schrank, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-21f428e167fca677e19791d74926ade60279babe4d9f48f1811234f996dc43e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>CMOS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Droplets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Film growth</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Integrated circuits</topic><topic>Level Set</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nozzles</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Smart gas sensors</topic><topic>Spray coating techniques</topic><topic>Spray pyrolysis</topic><topic>Spray pyrolysis deposition</topic><topic>Surface treatment</topic><topic>Thin films</topic><topic>Tin oxide film</topic><topic>Topography</topic><topic>Topography simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipovic, Lado</creatorcontrib><creatorcontrib>Selberherr, Siegfried</creatorcontrib><creatorcontrib>Mutinati, Giorgio C.</creatorcontrib><creatorcontrib>Brunet, Elise</creatorcontrib><creatorcontrib>Steinhauer, Stephan</creatorcontrib><creatorcontrib>Köck, Anton</creatorcontrib><creatorcontrib>Teva, Jordi</creatorcontrib><creatorcontrib>Kraft, Jochen</creatorcontrib><creatorcontrib>Siegert, Jörg</creatorcontrib><creatorcontrib>Schrank, Franz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipovic, Lado</au><au>Selberherr, Siegfried</au><au>Mutinati, Giorgio C.</au><au>Brunet, Elise</au><au>Steinhauer, Stephan</au><au>Köck, Anton</au><au>Teva, Jordi</au><au>Kraft, Jochen</au><au>Siegert, Jörg</au><au>Schrank, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods of simulating thin film deposition using spray pyrolysis techniques</atitle><jtitle>Microelectronic engineering</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>117</volume><spage>57</spage><epage>66</epage><pages>57-66</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>[Display omitted] •A simulator for spray pyrolysis deposition is created in the Level Set framework.•Droplet atomization, transport, and silicon interaction is analyzed and modeled.•Stokes force, gravity, electrical force, and thermophoretic forces calculated.•Electric (physical transport) and air pressure (CVD) nozzles simulated differently.•3D simulation examples for electric and air pressure spray deposition performed. Integration of thin tin oxide film formation into CMOS technology is a fundamental step to realize sensitive smart gas sensor devices. Spray pyrolysis is a deposition technique which has the potential to fulfil this requirement. A model for spray pyrolysis deposition is developed and implemented within a Level Set framework. Two models for the topography modification due to spray pyrolysis deposition are presented, with an electric and a pressure atomizing nozzle. The resulting film growth is modeled as a layer by layer deposition of the individual droplets which reach the wafer surface or as a CVD-like process, depending on whether the droplets form a vapor near the interface or if they deposit a film only after surface collision.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2013.12.025</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2014-04, Vol.117, p.57-66
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_1677910268
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
CMOS
Cross-disciplinary physics: materials science
rheology
Deposition
Design. Technologies. Operation analysis. Testing
Droplets
Electronics
Exact sciences and technology
Film growth
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Integrated circuits
Level Set
Materials science
Metals. Metallurgy
Methods of deposition of films and coatings
film growth and epitaxy
Nozzles
Physics
Production techniques
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Smart gas sensors
Spray coating techniques
Spray pyrolysis
Spray pyrolysis deposition
Surface treatment
Thin films
Tin oxide film
Topography
Topography simulation
title Methods of simulating thin film deposition using spray pyrolysis techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20of%20simulating%20thin%20film%20deposition%20using%20spray%20pyrolysis%20techniques&rft.jtitle=Microelectronic%20engineering&rft.au=Filipovic,%20Lado&rft.date=2014-04-01&rft.volume=117&rft.spage=57&rft.epage=66&rft.pages=57-66&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2013.12.025&rft_dat=%3Cproquest_cross%3E1677910268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551070488&rft_id=info:pmid/&rft_els_id=S016793171300720X&rfr_iscdi=true