Spectral and Transient Luminescence Measurements on GaSb/AlGaSb Quantum Wells Grown on GaSb/GaAs Heterojunctions with and without Interfacial Misfit Arrays

Growth of 90° interfacial-misfit-dislocation (IMF) array at heterointerfaces offers low dislocation densities in highly mismatched heterostructures such as GaSb/GaAs. We investigated time-integrated and time-resolved photoluminescence (PL) properties of a GaSb/AlGaSb quantum well (QW) structure grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2013-02, Vol.52 (2), p.022101-022101-7
Hauptverfasser: Jahan, Nahid A, Ahirwar, Pankaj, Rotter, Thomas J, Balakrishnan, Ganesh, Kumano, Hidekazu, Suemune, Ikuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Growth of 90° interfacial-misfit-dislocation (IMF) array at heterointerfaces offers low dislocation densities in highly mismatched heterostructures such as GaSb/GaAs. We investigated time-integrated and time-resolved photoluminescence (PL) properties of a GaSb/AlGaSb quantum well (QW) structure grown on (001) GaAs substrate with and without IMF array at the GaSb-buffer/GaAs interface. Our observation reveals that the low-temperature PL from the QW with IMF is twice more intense than that of the QW without IMF, indicating higher quantum efficiency with IMF. The QW with IMF also exhibited the band filling effect at higher excitation power revealed from the spectrally resolved PL decay measurements. These results are the indication of subdued dislocation density with the IMF growth mode. Our PL measurement results along with supportive band-structure calculation of the GaSb/AlGaSb QW show that the luminescence efficiency of the present QW structure is limited by the hole leakage at elevated temperature. Therefore the IMF effect will be more clearly demonstrated by replacing the heterostructure with the one with higher band-offsets.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.52.022101