Instability of sloshing motion in a vessel undergoing pivoted oscillations
Suspending a rectangular vessel partially filled with an inviscid fluid from a single rigid pivoting rod produces an interesting physical model for investigating the dynamic coupling between the fluid and vessel motion. The fluid motion is governed by the Euler equations relative to the moving frame...
Gespeichert in:
Veröffentlicht in: | Journal of fluids and structures 2015-01, Vol.52, p.166-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suspending a rectangular vessel partially filled with an inviscid fluid from a single rigid pivoting rod produces an interesting physical model for investigating the dynamic coupling between the fluid and vessel motion. The fluid motion is governed by the Euler equations relative to the moving frame of the vessel, and the vessel motion is given by a modified forced pendulum equation. The fully nonlinear, two-dimensional, equations of motion are derived and linearised for small-amplitude vessel and free-surface motions, and the natural frequencies of the system analysed. It is found that the linear problem exhibits an unstable solution if the rod length is shorter than a critical length which depends on the length of the vessel, the fluid height and the ratio of the fluid and vessel masses. In addition, we identify the existence of 1:1 resonances in the system where the symmetric sloshing modes oscillate with the same frequency as the coupled fluid/vessel motion. The implications of instability and resonance on the nonlinear problem are also briefly discussed. |
---|---|
ISSN: | 0889-9746 1095-8622 |
DOI: | 10.1016/j.jfluidstructs.2014.10.012 |