Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2015-02, Vol.275, p.777-784
Hauptverfasser: Pohl, E., Maximini, M., Bauschulte, A., vom Schloß, J., Hermanns, R.T.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects. •Electrochemical effects, thermal effects and degradation effects are described.•An efficient numerical model for long term simulations is presented.•A formal dual time scale simulation approach is proposed.•Analysis of simulation duration and accuracy are performed.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2014.11.054