Elastic large deflection analysis of plates subjected to uniaxial thrust using meshfree Mindlin-Reissner formulation
A meshfree approach for plate buckling/post-buckling problems in the case of uniaxial thrust is presented. A geometrical nonlinear formulation is employed using reproducing kernel approximation and stabilized conforming nodal integration. The bending components are represented by Mindlin–Reissner pl...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2013-12, Vol.52 (6), p.1313-1330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A meshfree approach for plate buckling/post-buckling problems in the case of uniaxial thrust is presented. A geometrical nonlinear formulation is employed using reproducing kernel approximation and stabilized conforming nodal integration. The bending components are represented by Mindlin–Reissner plate theory. The formulation has a locking-free property in imposing the Kirchhoff mode reproducing condition. In addition, in-plane deformation components are approximated by reproducing kernels. The deformation components are coupled to solve the general plate bending problem with geometrical non-linearity. In buckling/post-buckling analysis of plates, the in-plane displacement of the edges in their perpendicular directions is assumed to be uniform by considering the continuity of plating, and periodic boundary conditions are considered in assuming the periodicity of structures. In such boundary condition enforcements, some node displacements/rotations should be synchronized with others. However, the enforcements introduce difficulties in the meshfree approach because the reproducing kernel function does not have the so-called Kronecker delta property. In this paper, the multiple point constraint technique is introduced to treat such boundary conditions as well as the essential boundary conditions. Numerical studies are performed to examine the accuracy of the multiple point constraint enforcements. As numerical examples, buckling/post-buckling analyses of a rectangular plate and stiffened plate structure are presented to validate the proposed approach. |
---|---|
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-013-0878-z |