Investigation of the gafchromic film-EBT2: Features for UVR measurements

Important improvement in applied ultraviolet radiation (UVR) dosimetry is achieved using passive detector based on chemical or biological products. These kinds of UVR detectors change their optical properties in correlation with the dose. This work aims to investigate the gafchromic film EBT2 proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2014-04, Vol.97, p.360-365
Hauptverfasser: Abukassem, I, Bero, M A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Important improvement in applied ultraviolet radiation (UVR) dosimetry is achieved using passive detector based on chemical or biological products. These kinds of UVR detectors change their optical properties in correlation with the dose. This work aims to investigate the gafchromic film EBT2 properties under high UVA radiation dose comparable with long exposure to solar radiations. Measurements showed that about 90% of UVA radiation beam is absorbed in single films sheet (285 pm thickness). The EBT2 film components show good stability under high ultraviolet radiation dose. The increase in film visible spectrum absorbance, under UVA irradiation, is due to the decrease in the film active and topcoat layers transmittance and not of the polyester layers degradation. The change in film absorbance at 633 nm, after UVA dose of 112 kj/m super(2), is about two and half times more than the initial value of unexposed film A sub(0 633 nm) (A sub(0 633 nm) [thickapproximate]0.6). The phenomenon of post-exposure stability for the studied EBT2 film is found reproducible and has a small impact on the measurement accuracy ( [thickapproximate] 1%). The studied EBT2 film absorbance changes depend on the applied UVR dose and not on the irradiance level. Relative divergence between the film responses, measured at different dose rates, is lower than 5% for a wide irradiance range. This dependency is justified by the variation of local responsivity in the film and also the irradiation source stability. The response linearity of the gafchromic film EBT2 has been confirmed over a wide dose rate range in the UVA spectrum.
ISSN:0969-806X
DOI:10.1016/j.readphyschem.2013.07.014