MHD Natural Convection Heat and Mass Transfer Flow Past a Time Dependent Moving Vertical Plate with Ramped Temperature in a Rotating Medium with Hall Effects, Radiation and Chemical Reaction
An investigation of unsteady hydromagnetic natural convection heat and mass transfer flow of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving infinite vertical plate embedded in a uniform porous medium in a rotating system with Hall e...
Gespeichert in:
Veröffentlicht in: | Journal of mechanics 2015-02, Vol.31 (1), p.91-104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An investigation of unsteady hydromagnetic natural convection heat and mass transfer flow of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving infinite vertical plate embedded in a uniform porous medium in a rotating system with Hall effects in the presence of homogeneous first order chemical reaction is carried out when temperature of the plate has a temporarily ramped profile. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters. In order to highlight the influence of ramped temperature distribution within the plate on the flow-field, the fluid flow past a ramped temperature plate is compared with the one past an isothermal plate. |
---|---|
ISSN: | 1727-7191 1811-8216 |
DOI: | 10.1017/jmech.2014.71 |