A method for solving the functional equation with variable delay

Mathematical simulation of physical conditions at a moving boundary in problems of wave reflection leads to a finite-difference equation with variable delay. If the reflector velocity is smaller than the wave-propagation velocity, the existence and uniqueness of the equation solution is proved using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 1999-09, Vol.42 (9), p.793-797
Hauptverfasser: Bobkov, Yu. A., Utkin, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical simulation of physical conditions at a moving boundary in problems of wave reflection leads to a finite-difference equation with variable delay. If the reflector velocity is smaller than the wave-propagation velocity, the existence and uniqueness of the equation solution is proved using the principle of contraction maps and the method of successive approximations. It is shown that the solution can be expressed as a function of the composite argument that depends on one variable. The required accuracy of numerical calculations is ensured by partial sums when the argument is represented by an infinite converging series.[PUBLICATION ABSTRACT]
ISSN:0033-8443
1573-9120
DOI:10.1007/BF02676866