Self-organized correlations lead to explosive synchronization
Very recently, a first-order phase transition, named explosive synchronization (ES), has attracted great attention due to its remarkable novelty in theory and significant impact in applications. However, so far, all observations of ES have been associated with various correlation constraints on syst...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-02, Vol.91 (2), p.022810-022810, Article 022810 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Very recently, a first-order phase transition, named explosive synchronization (ES), has attracted great attention due to its remarkable novelty in theory and significant impact in applications. However, so far, all observations of ES have been associated with various correlation constraints on system parameters, which restrict its generality and applications. Here we consider heterogeneous networks around Hopf bifurcation point described by chemical reaction-diffusion systems and also by their reduced order parameter versions, the complex Ginzburg-Landau equations, and demonstrate that explosive synchronization can appear as an emergent feature of oscillatory networks, and the restrictions on specific parameter correlations used so far for ES can be lifted entirely. Theoretical analyses and numerical simulations show with a perfect agreement that explosive synchronization can appear in networks with nodes having identical natural frequencies, and necessary correlation conditions for ES can be realized in a self-organized manner by network evolution. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.91.022810 |