Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III

Maximal turnover rates for the dehydration of HCO3- catalyzed by the zinc metalloenzyme carbonic anhydrase III are limited by a proton transfer to zinc-bound hydroxide in the active site. We have used site-directed mutagenesis to place a proton donor, histidine, at position 64 and used 18O exchange...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1993-10, Vol.32 (40), p.10757-10762
Hauptverfasser: Silverman, David N, Tu, Chingkuang, Chen, Xian, Tanhauser, Susan M, Kresge, A. Jerry, Laipis, Philip J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximal turnover rates for the dehydration of HCO3- catalyzed by the zinc metalloenzyme carbonic anhydrase III are limited by a proton transfer to zinc-bound hydroxide in the active site. We have used site-directed mutagenesis to place a proton donor, histidine, at position 64 and used 18O exchange between CO2 and water measured by mass spectrometry to determine the rates of intramolecular proton transfer to the zinc-bound hydroxide. In a series of site-specific mutants, the values of pKa of the zinc-bound water ranged from approximately 5 to 9. The rate constants for proton transfer obeyed a Brønsted correlation and showed sharp curvature characteristic of facile proton transfers. Application of Marcus rate theory shows that this proton transfer has the small intrinsic energy barrier (near 1.5 kcal/mol) characteristic of rapid proton transfer between nitrogen and oxygen acids and bases, but has an observed overall energy barrier (near 10 kcal/mol), indicating the involvement of accompanying, energy requiring processes such as solvent reorganization or conformational change.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00091a029