Convenient synthesis of deazaflavin cofactor FO and its activity in F(420)-dependent NADP reductase

F420 and FO are phenolic 5-deazaflavin cofactors that complement nicotinamide and flavin redox coenzymes in biochemical oxidoreductases and photocatalytic systems. Specifically, these 5-deazaflavins lack the single electron reactivity with O2 of riboflavin-derived coenzymes (FMN and FAD), and, in ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2015-05, Vol.13 (18), p.5082-5085
Hauptverfasser: Hossain, Mohammad S, Le, Cuong Q, Joseph, Ebenezer, Nguyen, Toan Q, Johnson-Winters, Kayunta, Foss, Jr, Frank W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:F420 and FO are phenolic 5-deazaflavin cofactors that complement nicotinamide and flavin redox coenzymes in biochemical oxidoreductases and photocatalytic systems. Specifically, these 5-deazaflavins lack the single electron reactivity with O2 of riboflavin-derived coenzymes (FMN and FAD), and, in general, have a more negative redox potential than NAD(P)(+). For example, F420-dependent NADP(+) oxidoreductase (Fno) is critical to the conversion of CO2 to CH4 by methanogenic archaea, while FO functions as a light-harvesting agent in DNA repair. The preparation of these cofactors is an obstacle to their use in biochemical studies and biotechnology. Here, a convenient synthesis of FO was achieved by improving the redox stability of synthetic intermediates containing a polar, electron-rich aminophenol fragment. Improved yields and simplified purification techniques for FO are described. Additionally, Fno activity was restored with FO in the absence of F420. Investigating the FO-dependent NADP(+)/NADPH redox process by stopped-flow spectrophotometry, steady state kinetics were defined as having a Km of 4.00 ± 0.39 μM and a kcat of 5.27 ± 0.14 s(-1). The preparation of FO should enable future biochemical studies and novel uses of F420 mimics.
ISSN:1477-0539
DOI:10.1039/c5ob00365b