Forest Reorganization: A Case Study in an Old-Growth Forest Catastrophic Blowdown

We studied the patterns and mechanisms of regeneration of a 400-ha wind-throw in an old-growth beech-hemlock forest caused by a tornado on 31 May 1985. Starting in 1986, and over a period of six growing seasons, we recorded percent cover and density of woody stems, and monitored seedling demography...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 1995-04, Vol.76 (3), p.763-774
Hauptverfasser: Peterson, Chris J., Steward T. A. Pickett
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the patterns and mechanisms of regeneration of a 400-ha wind-throw in an old-growth beech-hemlock forest caused by a tornado on 31 May 1985. Starting in 1986, and over a period of six growing seasons, we recorded percent cover and density of woody stems, and monitored seedling demography of nearly 5000 seedlings in the windthrow and adjacent forest. Plant community response to the disturbance was dramatic: by August of 1986, species richness, tree seedling density and total percent cover were significantly greater in the windthrow than in the adjacent forest. Shade-intolerant herbs (e.g., Erechtites hieracifolia) and shrubs (e.g., Rubus allegheniensis) established and rapidly increased in abundance during the first 3 yr, but began declining by the 5th yr of the study. Tree seedlings established in decreasing amounts through the 6 yr of the study, and the young tree canopy was dominated in 1991 by seedlings and sprouts that established prior to 1987. Fagus grandifolia, a shade-tolerant species that established via advanced regeneration, was dominant the first 3 yr, but was surpassed in the 5th yr by Betula alleghaniensis, a species of intermediate tolerance that established from seed germination just before or shortly after the disturbance. Tsuga canadensis seedling densities were initially high, but deer browsing prevented substantial growth and a drought in 1988 caused heavy mortality of browsed seedlings. Regeneration thus differed from the predictions of the gap and Hubbard Brook models of forest regeneration (which predicts dominance by shade-intolerant species), and the severity model (which predicts dominance by shade-tolerant species). The differences point out important influences of availability of propagules and the impact of herbivory; and the need for more attention to models that incorporate multiple contingencies.
ISSN:0012-9658
1939-9170
DOI:10.2307/1939342