Ecology and genomic features of infection with Mycobacterium avium subspecies paratuberculosis in Egypt
Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is the causative agent of paratuberculosis, or Johne's disease, in cattle, with potential involvement in cases of Crohn's disease in humans. Johne's disease is found worldwide and is economically important for both...
Gespeichert in:
Veröffentlicht in: | Microbiology (Society for General Microbiology) 2015-04, Vol.161 (Pt 4), p.807-818 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is the causative agent of paratuberculosis, or Johne's disease, in cattle, with potential involvement in cases of Crohn's disease in humans. Johne's disease is found worldwide and is economically important for both beef and dairy industries. In an effort to characterize this important infection in Egypt, we analysed the ecological and genomic features of recent isolates of M. paratuberculosis. In this report, we examined 26 Holstein dairy herds distributed throughout Egypt, from 2010 to 2013. Using PCR analysis of faecal samples, we estimated a mean herd-level prevalence of 65.4 %, with animal-level infection that reached a mean of 13.6 % among animals suffering from diarrhoea. Whole genome sequencing of field isolates identified numerous single nucleotide polymorphisms among field isolates relative to the standard M. paratuberculosis K10 genome. Interestingly, the virulence of M. paratuberculosis isolates from Egypt revealed diverse virulence phenotypes in the murine model of paratuberculosis, with significant differences in tissue colonization, particularly during the chronic stage of infection. Overall, our analysis confirmed that Johne's disease is a newly identified problem in Egypt and indicated that M. paratuberculosis has potentially diverse genotypes that impact its virulence. Further ecological mapping and genomic analysis of M. paratuberculosis will enhance our understanding of the transmission and evolutionary dynamics of this pathogen under natural field conditions. |
---|---|
ISSN: | 1350-0872 1465-2080 |
DOI: | 10.1099/mic.0.000051 |