Activation of protein kinase C inhibits cellular production of the amyloid beta-protein

The 39-43-amino acid amyloid beta-protein (A beta), which is progressively deposited in cerebral plaques and blood vessels in Alzheimer's disease (AD), is released by cultured human cells during normal metabolism. Here we show that agents which activate protein kinase C or otherwise enhance pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-11, Vol.268 (31), p.22959-22962
Hauptverfasser: HUNG, A. Y, HAASS, C, NITSCH, R. M, WEI QIAO QIU, CITRON, M, WURTMAN, R. J, GROWDON, J. H, SELKOE, D. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 39-43-amino acid amyloid beta-protein (A beta), which is progressively deposited in cerebral plaques and blood vessels in Alzheimer's disease (AD), is released by cultured human cells during normal metabolism. Here we show that agents which activate protein kinase C or otherwise enhance protein phosphorylation caused a substantial decrease in A beta production in vitro. Protein kinase C activation also markedly decreased A beta release from cells that express mutant forms of the beta-amyloid precursor protein genetically linked to familial AD. Inhibition of A beta secretion could also be effected by direct stimulation of m1 muscarinic acetylcholine receptors with carbachol. These results demonstrate that activation of the protein kinase C signal transduction pathways down-regulates the generation of the amyloidogenic A beta peptide. Pharmacologic agents that activate this system, including a variety of first messengers, could potentially slow the development or growth of some A beta plaques during the early stages of AD.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(19)49409-x