How robust is the pre-1931 National Climatic Data Center—climate divisional dataset? Examples from Georgia and Louisiana
The National Climatic Data Center’s climate divisional dataset (CDD) is commonly used in climate change analyses. This dataset is a spatially continuous dataset for the conterminous USA from 1895 to the present. The CDD since 1931 is computed by averaging all available representative cooperative wea...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2015-04, Vol.120 (1-2), p.323-330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The National Climatic Data Center’s climate divisional dataset (CDD) is commonly used in climate change analyses. This dataset is a spatially continuous dataset for the conterminous USA from 1895 to the present. The CDD since 1931 is computed by averaging all available representative cooperative weather station data into a single monthly value for each of the 344 climate divisions of the conterminous USA, while pre-1931 data for climate divisions are derived from statewide averages using regression equations. This study examines the veracity of these pre-1931 data. All available Cooperative Observer Program (COOP) stations within each climate division in Georgia and Louisiana were averaged into a single monthly value for each month and each climate division from 1897 to 1930 to generate a divisional dataset (COOP DD), using similar methods to those used by the National Climatic Data Center to generate the post-1931 CDD. The reliability of the official CDD—derived from statewide averages—to produce temperature and precipitation means and trends prior to 1931 are then evaluated by comparing that dataset with the COOP DD with difference-of-means tests, correlations, and linear regression techniques. The CDD and the COOP DD are also compared to a divisional dataset derived from the United States Historical Climatology Network (USHCN) data (USHCN DD), with difference of means and correlation techniques, to demonstrate potential impacts of inhomogeneities within the CDD and the COOP DD. The statistical results, taken as a whole, not only indicate broad similarities between the CDD and COOP DD but also show that the CDD does not adequately portray pre-1931 temperature and precipitation in certain climate divisions within Georgia and Louisiana. In comparison with the USHCN DD, both the CDD and the COOP DD appear to be subject to biases that probably result from changing stations within climate divisions. As such, the CDD should be used judiciously for long-term studies of climate change, and past studies using the CDD should be evaluated in the context of these new findings. |
---|---|
ISSN: | 0177-798X 1434-4483 |
DOI: | 10.1007/s00704-014-1175-2 |