Comparison of iterative model-based reconstruction versus conventional filtered back projection and hybrid iterative reconstruction techniques: lesion conspicuity and influence of body size in anthropomorphic liver phantoms

This study aimed to determine whether an iterative model-based reconstruction (IMR) can improve lesion conspicuity and depiction on computed tomography (CT) compared with filtered back projection (FBP) and hybrid iterative reconstruction (iDose) using anthropomorphic phantoms. One small and one larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer assisted tomography 2014-11, Vol.38 (6), p.859-868
Hauptverfasser: Yoon, Jeong Hee, Lee, Jeong Min, Yu, Mi Hye, Baek, Jee Hyun, Jeon, Ju Hyun, Hur, Bo Yun, Dhanantwari, Amar, Chung, Se Young, Han, Joon Koo, Choi, Byung Ihn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to determine whether an iterative model-based reconstruction (IMR) can improve lesion conspicuity and depiction on computed tomography (CT) compared with filtered back projection (FBP) and hybrid iterative reconstruction (iDose) using anthropomorphic phantoms. One small and one large anthropomorphic body phantoms, each containing 8 simulated focal liver lesions (FLLs), were scanned using a 256-channel CT scanner at 120 kVp with variable tube current-time products (10-200 mAs). Scans were divided into 3 groups based on radiation dose (RD) as follows: (a) full dose (FD), (b) low dose (FD50), and (c) ultralow dose (FD25 for the large phantom, FD15 for the small phantom). All images were reconstructed using FBP, iDose, and IMR. Image noise and lesion-to-liver contrast were assessed quantitatively and qualitatively. Thereafter, 6 radiologists independently evaluated conspicuity of FLLs, and then, compared the number of invisible FLLs on 3 image sets of each RD group. Image noise was significantly lower with IMR than with FBP and iDose at the same RD. Iterative model-based reconstruction improved conspicuity of low-contrast FLLs in all RD groups compared to the others (P < 0.001). Furthermore, compared to FBP and iDose, the number of visible FLLs significantly increased on IMR images in the FD15 group of the small phantom 52.8% [38/72], 68.1% [49/72], and 84.8% [61/72], respectively; P < 0.001) and in the FD 25, FD50 groups of the large phantom (FD50: 56.9% [41/72], 76.4% [55/72], and 84.7% [61/72], respectively; P < 0.05). Iterative model-based reconstruction reduced image noise and improved low-contrast FLL conspicuity, compared to FBP and iDose. Therefore, depiction of low-contrast FLLs on FBP could be improved using IMR.
ISSN:0363-8715
1532-3145
DOI:10.1097/RCT.0000000000000145