In ovo gene manipulation of melanocytes and their adjacent keratinocytes during skin pigmentation of chicken embryos
During skin pigmentation in avians and mammalians, melanin is synthesized in the melanocytes, and subsequently transferred to adjacently located keratinocytes, leading to a wide coverage of the body surface by melanin‐containing cells. The behavior of melanocytes is influenced by keratinocytes shown...
Gespeichert in:
Veröffentlicht in: | Development, growth & differentiation growth & differentiation, 2015-04, Vol.57 (3), p.232-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During skin pigmentation in avians and mammalians, melanin is synthesized in the melanocytes, and subsequently transferred to adjacently located keratinocytes, leading to a wide coverage of the body surface by melanin‐containing cells. The behavior of melanocytes is influenced by keratinocytes shown mostly by in vitro studies. However, it has poorly been investigated how such intercellular cross‐talk is regulated in vivo because of a lack of suitable experimental models. Using chicken embryos, we developed a method that enables in vivo gene manipulations of melanocytes and keratinocytes, where these cells are separately labeled by different genes. Two types of gene transfer techniques were combined: one was a retrovirus‐mediated gene infection into the skin/keratinocytes, and the other was the in ovo DNA electroporation into neural crest cells, the origin of melanocytes. Since the Replication‐Competent Avian sarcoma‐leukosis virus long terminal repeat with Splice acceptor (RCAS) infection was available only for the White leghorn strain showing little pigmentation, melanocytes prepared from the Hypeco nera (pigmented) were back‐transplanted into embryos of White leghorn. Prior to the transplantation, enhanced green fluorescent protein (EGFP)+Neor+‐electroporated melanocytes from Hypeco nera were selectively grown in G418‐supplemented medium. In the skin of recipient White leghorn embryos infected with RCAS‐mOrange, mOrange+ keratinocytes and transplanted EGFP+ melanocytes were frequently juxtaposed each other. High‐resolution confocal microscopy also revealed that transplanted melanocytes exhibited normal behaviors regarding distribution patterns of melanocytes, dendrite morphology, and melanosome transfer. The method described in this study will serve as a useful tool to understand the mechanisms underlying intercellular regulations during skin pigmentation in vivo.
A novel method has been developed that allows gene manipulations of melanocytes and keratinocytes separately and specifically in a single chicken embryo. A retrovirus‐mediated skin infection is combined with a back‐transplantation of gene‐manipulated melanocytes. This method will help understanding the mechanisms of interactions between melanocytes and keratinocytes. |
---|---|
ISSN: | 0012-1592 1440-169X |
DOI: | 10.1111/dgd.12201 |