A Multiplicative Error Model with Heterogeneous Components for Forecasting Realized Volatility

To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2015-04, Vol.34 (3), p.209-219
Hauptverfasser: Han, Heejoon, Park, Myung D., Zhang, Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.2333