Variable selection and corporate bankruptcy forecasts

We investigate the relative importance of various bankruptcy predictors commonly used in the existing literature by applying a variable selection technique, the least absolute shrinkage and selection operator (LASSO), to a comprehensive bankruptcy database. Over the 1980–2009 period, LASSO admits th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of banking & finance 2015-03, Vol.52, p.89-100
Hauptverfasser: Tian, Shaonan, Yu, Yan, Guo, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the relative importance of various bankruptcy predictors commonly used in the existing literature by applying a variable selection technique, the least absolute shrinkage and selection operator (LASSO), to a comprehensive bankruptcy database. Over the 1980–2009 period, LASSO admits the majority of Campbell et al. (2008) predictive variables into the bankruptcy forecast model. Interestingly, by contrast with recent studies, some financial ratios constructed from only accounting data also contain significant incremental information about future default risk, and their importance relative to that of market-based variables in bankruptcy forecasts increases with prediction horizons. Moreover, LASSO-selected variables have superior out-of-sample predictive power and outperform (1) those advocated by Campbell et al. (2008) and (2) the distance to default from Merton’s (1974) structural model.
ISSN:0378-4266
1872-6372
DOI:10.1016/j.jbankfin.2014.12.003