Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation

Genome-wide localization and activity analysis of the de novo DNA methyltransferases DNMT3A and DNMT3B in mouse embryonic stem cells identifies overlapping and individual targeting preferences to the genome, including a role for DNMT3B in gene body methylation. Mechanism of de novo DNA methylation G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2015-04, Vol.520 (7546), p.243-247
Hauptverfasser: Baubec, Tuncay, Colombo, Daniele F., Wirbelauer, Christiane, Schmidt, Juliane, Burger, Lukas, Krebs, Arnaud R., Akalin, Altuna, Schübeler, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genome-wide localization and activity analysis of the de novo DNA methyltransferases DNMT3A and DNMT3B in mouse embryonic stem cells identifies overlapping and individual targeting preferences to the genome, including a role for DNMT3B in gene body methylation. Mechanism of de novo DNA methylation Genomic patterns of DNA methylation are established by the de novo DNA methyltransferases DNMT3A and DNMT3B. Dirk Schübeler and colleagues determine the genome-wide localization and activity of these two enzymes in mouse embryonic stem cells. Both localize to methylated CpG-rich regions and are excluded from active gene regulatory regions. DNMT3B also binds to the bodies of actively transcribed genes, dependent on its PWWP domain and methylation of Lys36 on histone H3. This leads to de novo methylation of active genes that scales with co-transcriptional deposition of H3K36me3. DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication 1 . Absence of these enzymes is lethal 2 , and somatic mutations in these genes have been associated with several human diseases 3 , 4 . How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature14176