Bactericidal mechanisms of Au@TNBs under visible light irradiation
Au@TNBs nanocomposites were synthesized by depositing Au nanoparticles onto the surfaces of TiO2 nanobelts (TNBs). The disinfection activities of Au@TNBs on model cell type, Gram-negative Escherichia coli (E. coli), were examined under visible light irradiation conditions. Au@TNBs exhibited stronger...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2015-04, Vol.128, p.211-218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Au@TNBs nanocomposites were synthesized by depositing Au nanoparticles onto the surfaces of TiO2 nanobelts (TNBs). The disinfection activities of Au@TNBs on model cell type, Gram-negative Escherichia coli (E. coli), were examined under visible light irradiation conditions. Au@TNBs exhibited stronger bactericidal properties toward E. coli than those of TNBs and Au NPs under visible light irradiation. The bactericidal mechanisms of Au@TNBs under light conditions were explored, specifically, the specific active species controlling the inactivation of bacteria were determined. Active species (H2O2, diffusing ∙OH, ∙O2-, 1O2, and e-) generated by Au@TNBs were found to play important roles on the inactivation of bacteria. Moreover, the concentrations of H2O2, ·OH, ·O2-, and 1O2 generated in the antimicrobial system were estimated. Without the presence of active species, the direct contact of Au@TNBs with bacterial cells was found to have no bactericidal effect. The reusability of Au@TNBs were also determined. Au@TNBs exhibited strong antibacterial activity toward E. coli even in five consecutively reused cycles. This study indicated that the fabricated Au@TNBs could be potentially utilized to inactivate bacteria in water. |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2015.01.013 |