On the properties of a new tensor product of matrices

Previously, the author introduced a new tensor product of matrices according to which the matrix of the discrete Walsh-Paley transform can be represented as a power of the second-order discrete Walsh transform matrix H with respect to this product. This power is an analogue of the representation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2014-04, Vol.54 (4), p.561-574
1. Verfasser: Bespalov, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, the author introduced a new tensor product of matrices according to which the matrix of the discrete Walsh-Paley transform can be represented as a power of the second-order discrete Walsh transform matrix H with respect to this product. This power is an analogue of the representation of the Sylvester-Hadamard matrix in the form of a Kronecker power of H . The properties of the new tensor product of matrices are examined and compared with those of the Kronecker product. An algebraic structure with the matrix H used as a generator element and with these two tensor products of matrices is constructed and analyzed. It is shown that the new tensor product operation proposed can be treated as a convenient mathematical language for describing the foundations of discrete Fourier analysis.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542514040046