Molecular recognition of HER-1 in whole-blood samples
Multimode sensing was proposed for molecular screening and recognition of HER‐1 in whole blood. The tools used for molecular recognition were platforms based on nanostructured materials such as the complex of Mn(III) with meso‐tetra (4‐carboxyphenyl) porphyrin, and maltodextrin (dextrose equivalence...
Gespeichert in:
Veröffentlicht in: | Journal of molecular recognition 2014-11, Vol.27 (11), p.653-658 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multimode sensing was proposed for molecular screening and recognition of HER‐1 in whole blood. The tools used for molecular recognition were platforms based on nanostructured materials such as the complex of Mn(III) with meso‐tetra (4‐carboxyphenyl) porphyrin, and maltodextrin (dextrose equivalence between 4 and 7), immobilized in diamond paste, graphite paste or C60 fullerene paste. The identification of HER‐1 in whole‐blood samples, at molecular level, is performed using stochastic mode and is followed by the quantification of it using stochastic and differential pulse voltammetry modes. HER‐1 can be identified in the concentration range between 280 fg/ml and 4.86 ng/ml using stochastic mode, this making possible the early detection of cancers such as gastrointestinal, pancreatic and lung cancers. The recovery tests performed using whole‐blood samples proved that the platforms can be used for identification and quantification of HER‐1 with high sensitivity and reliability in such samples, these making them good molecular screening tools. Copyright © 2014 John Wiley & Sons, Ltd.
Multimode sensors based on stochastic and differential pulse voltammetry modes detect HER‐1 in whole‐blood samples. The identification of HER‐1 in whole‐blood samples, at molecular level, is performed using stochastic mode and is followed by the quantification of it using stochastic and differential pulse voltammetry modes. HER‐1 can be identified in the concentration range between 280 fg/ml and 4.86 ng/ml using stochastic mode, this making possible the early detection of cancers such as gastrointestinal, pancreatic and lung cancers. |
---|---|
ISSN: | 0952-3499 1099-1352 |
DOI: | 10.1002/jmr.2388 |