Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon

A novel method of removing sulfate from acid mine drainage (AMD) water was developed by depositing polypyrrole into the pores of wood-based activated carbon (RGC) using in situ chemical oxidative polarization. This polypyrrole-tailored activated carbon hosted positively charged polypyrrole functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2014-07, Vol.73, p.51-60
Hauptverfasser: Hong, Siqi, Cannon, Fred S., Hou, Pin, Byrne, Timothy, Nieto-Delgado, Cesar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel method of removing sulfate from acid mine drainage (AMD) water was developed by depositing polypyrrole into the pores of wood-based activated carbon (RGC) using in situ chemical oxidative polarization. This polypyrrole-tailored activated carbon hosted positively charged polypyrrole functionality that offered sorption capacity for sulfate. Specifically, in batch tests, the polypyrrole-grafted RGC achieved a sulfate loading of 48mg/g, this being 8 times higher than for pristine RGC. Rapid Small Scale Column Tests appraised the polypyrrole-tailored RGC for removing 773mg/L sulfate from AMD water. The more favorably tailored carbon removed sulfate to half-breakthrough at 24bedvolumes (BV). This compared to 1.5BV for pristine activated carbon. Per mass and charge balance, 9% of the nitrogen in the polypyrrole functionality was active for capturing sulfate. On this tailored carbon, the nitrogen content was 12.9%, as characterized by X-ray photoelectron spectroscopy. With this polypyrrole tailoring, the carbon’s pore volume distributions diminished to one-third, as characterized by argon adsorption.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2014.02.036