Plasma-activated direct bonding of patterned silicon-on-insulator wafers to diamond-coated wafers under vacuum
Direct wafer bonding requires the surfaces to have low surface roughness (Ra
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2014-08, Vol.47, p.53-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | Diamond and related materials |
container_volume | 47 |
creator | Can, Uryan Isik Bayram, Baris |
description | Direct wafer bonding requires the surfaces to have low surface roughness (Ra |
doi_str_mv | 10.1016/j.diamond.2014.06.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671616761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963514001204</els_id><sourcerecordid>1671616761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-8896ccaf6c72d552a4d9ef51334cbeda736ffff0547731dc5154f7e8d4745b5f3</originalsourceid><addsrcrecordid>eNqFUMGKFDEQDaLguPoJQl8EL92bpDtJ90lkcXVhYD3oOdRUEsnQnYxJesS_N7PTeN2iqDrUq_eqHiHvGe0YZfL22BkPSwym45QNHZUdpfwF2bFRTS2lkr8kOzpx0U6yF6_Jm5yPlDI-DWxHwvcZ8gItYPFnKNY0xieLpTlUPh9-NdE1JyjFplBn2c8eY2hr-pDXGUpMzR9wNuWmxGY7o8X4xLQN1mBsas6A67q8Ja8czNm-2_oN-Xn_5cfdt3b_-PXh7vO-xV7x0o7jJBHBSVTcCMFhMJN1gvX9gAdrQPXS1aBiUKpnBgUTg1N2NIMaxEG4_oZ8vPKeUvy92lz04jPaeYZg45o1k4rJWiSrUHGFYoo5J-v0KfkF0l_NqL74q496e0xf_NVU6upv3fuwSUBGmF2CgD7_X-ajmOSoLvyfrjhb_z17m3RGbwPaq9HaRP-M0j-UuJXi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671616761</pqid></control><display><type>article</type><title>Plasma-activated direct bonding of patterned silicon-on-insulator wafers to diamond-coated wafers under vacuum</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Can, Uryan Isik ; Bayram, Baris</creator><creatorcontrib>Can, Uryan Isik ; Bayram, Baris</creatorcontrib><description>Direct wafer bonding requires the surfaces to have low surface roughness (Ra<0.5nm) as well as to be free of any particles or contaminants. Meeting these requirements for wafers patterned with lithography and dry etching presents a serious problem in terms of removal of photoresist residue and etch-related particles, which would require expensive additional equipment to be removed. In this study, we propose the use of chemical mechanical polishing (CMP) to be performed after all lithography and dry etch process steps involving several masks are completed. To reduce the adverse effect of any remaining slurry that might reside in the etched structures, we also propose to reduce the maximum annealing temperature from 550°C down to 300°C. The effect of lower annealing temperature on bonding is compensated using a sequential plasma activation with 60s of O2 followed by 90s of N2 on contacting surfaces made of silicon dioxide to achieve successful wafer bonding. Initial plasma activation with O2 additionally serves as a final cleaning step whereas the following activation with N2 for an extended duration is to fully activate the surface for direct bonding. This proposed technique can motivate the use of direct wafer bonding for microfabrication of advanced MEMS devices.
[Display omitted]
•Unpatterned wafers make good plasma-activated direct bonding with a SiO2 layer.•Diamond-coated wafers having UNCD, NCD and MCD with low residual stress are used.•Patterned SOI wafer makes poor bonding to diamond-coated wafer.•CMP of already patterned SOI wafer makes good bonding to diamond-coated wafer.•Sequential plasma activation and lower annealing temperature improve the bond.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2014.06.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activation ; Annealing ; Applied sciences ; Bonding ; Capacitive micromachined ultrasonic transducer ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Design. Technologies. Operation analysis. Testing ; Diamond ; Diamonds ; Direct bonding ; Dry etching ; Drying ; Electronics ; Etching ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Integrated circuits ; Lithography ; Materials science ; Microelectronic fabrication (materials and surfaces technology) ; Physics ; Plasma activation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon on insulator ; Specific materials ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Wafers</subject><ispartof>Diamond and related materials, 2014-08, Vol.47, p.53-57</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-8896ccaf6c72d552a4d9ef51334cbeda736ffff0547731dc5154f7e8d4745b5f3</citedby><cites>FETCH-LOGICAL-c372t-8896ccaf6c72d552a4d9ef51334cbeda736ffff0547731dc5154f7e8d4745b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2014.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28596871$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Can, Uryan Isik</creatorcontrib><creatorcontrib>Bayram, Baris</creatorcontrib><title>Plasma-activated direct bonding of patterned silicon-on-insulator wafers to diamond-coated wafers under vacuum</title><title>Diamond and related materials</title><description>Direct wafer bonding requires the surfaces to have low surface roughness (Ra<0.5nm) as well as to be free of any particles or contaminants. Meeting these requirements for wafers patterned with lithography and dry etching presents a serious problem in terms of removal of photoresist residue and etch-related particles, which would require expensive additional equipment to be removed. In this study, we propose the use of chemical mechanical polishing (CMP) to be performed after all lithography and dry etch process steps involving several masks are completed. To reduce the adverse effect of any remaining slurry that might reside in the etched structures, we also propose to reduce the maximum annealing temperature from 550°C down to 300°C. The effect of lower annealing temperature on bonding is compensated using a sequential plasma activation with 60s of O2 followed by 90s of N2 on contacting surfaces made of silicon dioxide to achieve successful wafer bonding. Initial plasma activation with O2 additionally serves as a final cleaning step whereas the following activation with N2 for an extended duration is to fully activate the surface for direct bonding. This proposed technique can motivate the use of direct wafer bonding for microfabrication of advanced MEMS devices.
[Display omitted]
•Unpatterned wafers make good plasma-activated direct bonding with a SiO2 layer.•Diamond-coated wafers having UNCD, NCD and MCD with low residual stress are used.•Patterned SOI wafer makes poor bonding to diamond-coated wafer.•CMP of already patterned SOI wafer makes good bonding to diamond-coated wafer.•Sequential plasma activation and lower annealing temperature improve the bond.</description><subject>Activation</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Capacitive micromachined ultrasonic transducer</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Diamond</subject><subject>Diamonds</subject><subject>Direct bonding</subject><subject>Dry etching</subject><subject>Drying</subject><subject>Electronics</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Integrated circuits</subject><subject>Lithography</subject><subject>Materials science</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Physics</subject><subject>Plasma activation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon on insulator</subject><subject>Specific materials</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Wafers</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUMGKFDEQDaLguPoJQl8EL92bpDtJ90lkcXVhYD3oOdRUEsnQnYxJesS_N7PTeN2iqDrUq_eqHiHvGe0YZfL22BkPSwym45QNHZUdpfwF2bFRTS2lkr8kOzpx0U6yF6_Jm5yPlDI-DWxHwvcZ8gItYPFnKNY0xieLpTlUPh9-NdE1JyjFplBn2c8eY2hr-pDXGUpMzR9wNuWmxGY7o8X4xLQN1mBsas6A67q8Ja8czNm-2_oN-Xn_5cfdt3b_-PXh7vO-xV7x0o7jJBHBSVTcCMFhMJN1gvX9gAdrQPXS1aBiUKpnBgUTg1N2NIMaxEG4_oZ8vPKeUvy92lz04jPaeYZg45o1k4rJWiSrUHGFYoo5J-v0KfkF0l_NqL74q496e0xf_NVU6upv3fuwSUBGmF2CgD7_X-ajmOSoLvyfrjhb_z17m3RGbwPaq9HaRP-M0j-UuJXi</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Can, Uryan Isik</creator><creator>Bayram, Baris</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Plasma-activated direct bonding of patterned silicon-on-insulator wafers to diamond-coated wafers under vacuum</title><author>Can, Uryan Isik ; Bayram, Baris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-8896ccaf6c72d552a4d9ef51334cbeda736ffff0547731dc5154f7e8d4745b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Capacitive micromachined ultrasonic transducer</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Diamond</topic><topic>Diamonds</topic><topic>Direct bonding</topic><topic>Dry etching</topic><topic>Drying</topic><topic>Electronics</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Integrated circuits</topic><topic>Lithography</topic><topic>Materials science</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Physics</topic><topic>Plasma activation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon on insulator</topic><topic>Specific materials</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Can, Uryan Isik</creatorcontrib><creatorcontrib>Bayram, Baris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Can, Uryan Isik</au><au>Bayram, Baris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-activated direct bonding of patterned silicon-on-insulator wafers to diamond-coated wafers under vacuum</atitle><jtitle>Diamond and related materials</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>47</volume><spage>53</spage><epage>57</epage><pages>53-57</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>Direct wafer bonding requires the surfaces to have low surface roughness (Ra<0.5nm) as well as to be free of any particles or contaminants. Meeting these requirements for wafers patterned with lithography and dry etching presents a serious problem in terms of removal of photoresist residue and etch-related particles, which would require expensive additional equipment to be removed. In this study, we propose the use of chemical mechanical polishing (CMP) to be performed after all lithography and dry etch process steps involving several masks are completed. To reduce the adverse effect of any remaining slurry that might reside in the etched structures, we also propose to reduce the maximum annealing temperature from 550°C down to 300°C. The effect of lower annealing temperature on bonding is compensated using a sequential plasma activation with 60s of O2 followed by 90s of N2 on contacting surfaces made of silicon dioxide to achieve successful wafer bonding. Initial plasma activation with O2 additionally serves as a final cleaning step whereas the following activation with N2 for an extended duration is to fully activate the surface for direct bonding. This proposed technique can motivate the use of direct wafer bonding for microfabrication of advanced MEMS devices.
[Display omitted]
•Unpatterned wafers make good plasma-activated direct bonding with a SiO2 layer.•Diamond-coated wafers having UNCD, NCD and MCD with low residual stress are used.•Patterned SOI wafer makes poor bonding to diamond-coated wafer.•CMP of already patterned SOI wafer makes good bonding to diamond-coated wafer.•Sequential plasma activation and lower annealing temperature improve the bond.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2014.06.002</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2014-08, Vol.47, p.53-57 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671616761 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Activation Annealing Applied sciences Bonding Capacitive micromachined ultrasonic transducer Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Design. Technologies. Operation analysis. Testing Diamond Diamonds Direct bonding Dry etching Drying Electronics Etching Exact sciences and technology Fullerenes and related materials diamonds, graphite Integrated circuits Lithography Materials science Microelectronic fabrication (materials and surfaces technology) Physics Plasma activation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon on insulator Specific materials Structure and morphology thickness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology Wafers |
title | Plasma-activated direct bonding of patterned silicon-on-insulator wafers to diamond-coated wafers under vacuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-activated%20direct%20bonding%20of%20patterned%20silicon-on-insulator%20wafers%20to%20diamond-coated%20wafers%20under%20vacuum&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Can,%20Uryan%20Isik&rft.date=2014-08-01&rft.volume=47&rft.spage=53&rft.epage=57&rft.pages=53-57&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2014.06.002&rft_dat=%3Cproquest_cross%3E1671616761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671616761&rft_id=info:pmid/&rft_els_id=S0925963514001204&rfr_iscdi=true |