New manifold two-dimensional single-layer structures of zinc-blende compounds

Two-dimensional (2D) materials open up tremendous opportunities for attractive applications in next-generation flexible and transparent nanoelectronic devices. In this work, the structural and electronic properties of 81 single layer structures are systematically examined for the 27 zinc-blende (ZB)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-11, Vol.2 (42), p.17971-17978
Hauptverfasser: Tong, Chuan-Jia, Zhang, Hui, Zhang, Yan-Ning, Liu, Hao, Liu, Li-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) materials open up tremendous opportunities for attractive applications in next-generation flexible and transparent nanoelectronic devices. In this work, the structural and electronic properties of 81 single layer structures are systematically examined for the 27 zinc-blende (ZB) materials with the constitutional formula MX by density functional calculations. The calculated results reveal that 38 of them are thermodynamically stable including 12 two-phase coexistence structures. Interestingly, the stable configurations in various MX compounds are correlated with the atomic radius and electronegativity difference of constituent elements X and M. The atomic and electronic properties of novel materials are greatly dependent on the stable phase structures. The stable single-layer ZB structures exhibit versatile electronic properties, such as tunable band gaps, strong optical absorption in the solar spectrum and suitable band edge positions, thus such 2D materials are potential photocatalysts for water-splitting.
ISSN:2050-7488
2050-7496
DOI:10.1039/c4ta03944k