On the Identification of the Optimal Partition of Second Order Cone Optimization Problems

This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2014-01, Vol.24 (1), p.385-414
Hauptverfasser: Terlaky, Tamas, Wang, Zhouhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 1
container_start_page 385
container_title SIAM journal on optimization
container_volume 24
creator Terlaky, Tamas
Wang, Zhouhong
description This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optimal partition $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and $\mathcal{T}$ for SOCO problems can be identified along the central path when the barrier parameter $\mu$ is small enough. Then we generalize the results to a specific neighborhood of the central path. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/120890880
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671613931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671613931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-e13dcaa0166116bb85966777179c7c810791d31922c7cbd8be6aca3138597a273</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKsL_8GAG12M5iadPJZSrBYKU1AXroZMJoMp06Qm6UJ_vamtLlzd13cOl4PQJeBbAMrvgGAhsRD4CI0Ay6rkIOTxrq9IyQidnKKzGFcYZ4yJEXqrXZHeTTHvjEu2t1ol613h-59tvUl2rYZiqUKyv4dno73rijp0JhRT7w6Y_dpLl8G3g1nHc3TSqyGai0Mdo9fZw8v0qVzUj_Pp_aLUROJUGqCdVgoDYwCsbUUlGeOcA5eaawGYS-goSELy2HaiNUxpRYFmkCvC6Rhd7303wX9sTUzN2kZthkE547exAcaBAZVZMkZX_9CV3waXv2ugwmwiAEiVqZs9pYOPMZi-2YScQvhsADe7kJu_kOk3U-BsWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506481125</pqid></control><display><type>article</type><title>On the Identification of the Optimal Partition of Second Order Cone Optimization Problems</title><source>SIAM Journals Online</source><creator>Terlaky, Tamas ; Wang, Zhouhong</creator><creatorcontrib>Terlaky, Tamas ; Wang, Zhouhong</creatorcontrib><description>This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optimal partition $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and $\mathcal{T}$ for SOCO problems can be identified along the central path when the barrier parameter $\mu$ is small enough. Then we generalize the results to a specific neighborhood of the central path. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/120890880</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Barriers ; Optimization ; Partitions ; Variables</subject><ispartof>SIAM journal on optimization, 2014-01, Vol.24 (1), p.385-414</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-e13dcaa0166116bb85966777179c7c810791d31922c7cbd8be6aca3138597a273</citedby><cites>FETCH-LOGICAL-c290t-e13dcaa0166116bb85966777179c7c810791d31922c7cbd8be6aca3138597a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Terlaky, Tamas</creatorcontrib><creatorcontrib>Wang, Zhouhong</creatorcontrib><title>On the Identification of the Optimal Partition of Second Order Cone Optimization Problems</title><title>SIAM journal on optimization</title><description>This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optimal partition $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and $\mathcal{T}$ for SOCO problems can be identified along the central path when the barrier parameter $\mu$ is small enough. Then we generalize the results to a specific neighborhood of the central path. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Barriers</subject><subject>Optimization</subject><subject>Partitions</subject><subject>Variables</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLAzEUhYMoWKsL_8GAG12M5iadPJZSrBYKU1AXroZMJoMp06Qm6UJ_vamtLlzd13cOl4PQJeBbAMrvgGAhsRD4CI0Ay6rkIOTxrq9IyQidnKKzGFcYZ4yJEXqrXZHeTTHvjEu2t1ol613h-59tvUl2rYZiqUKyv4dno73rijp0JhRT7w6Y_dpLl8G3g1nHc3TSqyGai0Mdo9fZw8v0qVzUj_Pp_aLUROJUGqCdVgoDYwCsbUUlGeOcA5eaawGYS-goSELy2HaiNUxpRYFmkCvC6Rhd7303wX9sTUzN2kZthkE547exAcaBAZVZMkZX_9CV3waXv2ugwmwiAEiVqZs9pYOPMZi-2YScQvhsADe7kJu_kOk3U-BsWQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Terlaky, Tamas</creator><creator>Wang, Zhouhong</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>On the Identification of the Optimal Partition of Second Order Cone Optimization Problems</title><author>Terlaky, Tamas ; Wang, Zhouhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-e13dcaa0166116bb85966777179c7c810791d31922c7cbd8be6aca3138597a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied mathematics</topic><topic>Barriers</topic><topic>Optimization</topic><topic>Partitions</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terlaky, Tamas</creatorcontrib><creatorcontrib>Wang, Zhouhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terlaky, Tamas</au><au>Wang, Zhouhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Identification of the Optimal Partition of Second Order Cone Optimization Problems</atitle><jtitle>SIAM journal on optimization</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>385</spage><epage>414</epage><pages>385-414</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optimal partition $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and $\mathcal{T}$ for SOCO problems can be identified along the central path when the barrier parameter $\mu$ is small enough. Then we generalize the results to a specific neighborhood of the central path. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120890880</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 2014-01, Vol.24 (1), p.385-414
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_miscellaneous_1671613931
source SIAM Journals Online
subjects Applied mathematics
Barriers
Optimization
Partitions
Variables
title On the Identification of the Optimal Partition of Second Order Cone Optimization Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Identification%20of%20the%20Optimal%20Partition%20of%20Second%20Order%20Cone%20Optimization%20Problems&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Terlaky,%20Tamas&rft.date=2014-01-01&rft.volume=24&rft.issue=1&rft.spage=385&rft.epage=414&rft.pages=385-414&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/120890880&rft_dat=%3Cproquest_cross%3E1671613931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506481125&rft_id=info:pmid/&rfr_iscdi=true