On the Identification of the Optimal Partition of Second Order Cone Optimization Problems

This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2014-01, Vol.24 (1), p.385-414
Hauptverfasser: Terlaky, Tamas, Wang, Zhouhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses the identification of the optimal partition of second order cone optimization (SOCO). By giving some condition numbers which only depend on the SOCO problem itself, we derive some bounds on the magnitude of the blocks of variables along the central path and prove that the optimal partition $\mathcal{B}, \mathcal{N}, \mathcal{R}$, and $\mathcal{T}$ for SOCO problems can be identified along the central path when the barrier parameter $\mu$ is small enough. Then we generalize the results to a specific neighborhood of the central path. [PUBLICATION ABSTRACT]
ISSN:1052-6234
1095-7189
DOI:10.1137/120890880