Modelling dispersion in laminar and turbulent flows in an open channel based on centre manifolds using 1D-IRBFN method
Centre manifold method is an accurate approach for analytically constructing an advection–diffusion equation (and even more accurate equations involving higher-order derivatives) for the depth-averaged concentration of substances in channels. This paper presents a direct numerical verification of th...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2014-07, Vol.38 (14), p.3672-3691 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Centre manifold method is an accurate approach for analytically constructing an advection–diffusion equation (and even more accurate equations involving higher-order derivatives) for the depth-averaged concentration of substances in channels. This paper presents a direct numerical verification of this method with examples of the dispersion in laminar and turbulent flows in an open channel with a smooth bottom. The one-dimensional integrated radial basis function network (1D-IRBFN) method is used as a numerical approach to obtain a numerical solution for the original two-dimensional (2-D) advection–diffusion equation. The 2-D solution is depth-averaged and compared with the solution of the 1-D equation derived using the centre manifolds. The numerical results show that the 2-D and 1-D solutions are in good agreement both for the laminar flow and turbulent flow. The maximum depth-averaged concentrations for the 1-D and 2-D models gradually converge to each other, with their velocities becoming practically equal. The obtained numerical results also demonstrate that the longitudinal diffusion can be neglected compared to the advection. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2013.12.007 |