Comparisons of nozzle orifice processing methods using synchrotron X-ray micro-tomography
Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining p...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2012-03, Vol.13 (3), p.182-188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining precision and characteristics of orifice processing methods, an ap- proach is presented based on the parameters of the internal structures of nozzle orifices, including the nozzle diameter, the orifice inner surface waviness, the eccentricity distance and the angle between orifices. Using this approach, two kinds of nozzle orifice processing methods, computerized numerical control drilling and electric discharge machining, have been studied and compared. The results show that this approach enables a simple, direct, and comprehensive contrastive analysis of nozzle orifice processing methods. When processing a single orifice, the electric discharge machining method has obvious advantages. However, when there are multiple orifices, the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A1100252 |