Liquid hydrogen tank considerations for turboelectric distributed propulsion

Purpose – This article aims to investigate a selected number of liquid hydrogen storage tank parameters in a turboelectric distributed propulsion concept. Design/methodology/approach – In this research study, tank structure, tank geometry, tank materials and additional physical phenomenon such as hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aircraft Engineering and Aerospace Technology 2014-01, Vol.86 (1), p.67-75
Hauptverfasser: Raja Sekaran, Paulas, S. Gohardani, Amir, Doulgeris, Georgios, Singh, Riti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 67
container_title Aircraft Engineering and Aerospace Technology
container_volume 86
creator Raja Sekaran, Paulas
S. Gohardani, Amir
Doulgeris, Georgios
Singh, Riti
description Purpose – This article aims to investigate a selected number of liquid hydrogen storage tank parameters in a turboelectric distributed propulsion concept. Design/methodology/approach – In this research study, tank structure, tank geometry, tank materials and additional physical phenomenon such as hydrogen boil-off and permeation are considered. A parametric analysis of different insulation foams is also performed throughout the design process of a lightweight liquid hydrogen storage tank. Findings – Based on the mass of boil-off and foam weight, phenolic foam exhibited better characteristics amongst the five foam insulation materials considered in this particular study. Practical implications – Liquid hydrogen occupies 4.2 times the volume of jet fuel for the same amount of energy. This suggests that a notable tank size is expected. Nonetheless, as jet fuel weighs 2.9 times more than liquid hydrogen for the same amount of energy, this reduced weight aspect partly compensates for the increased tank size. Originality/value – In this article, potential insulation materials for liquid hydrogen storage tanks are highlighted and compared utilizing a presented methodology.
doi_str_mv 10.1108/AEAT-12-2011-0195
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671607183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438984745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-abd14fe73a0f2d2767800ee78b8e3b7c75d9bea9d054f5e38f68fbe3214ff8bc3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEEqXwA9gisbAEfLYTO2NV8SVVYimzZcdnSEnj1k6G_nsclQWEmO6G57073ZNl10DuAIi8Xzws1gXQghKAgkBdnmQzEKUsOAV2OvVcFlJyep5dxLghBKqSsFm2WrX7sbX5x8EG_459Puj-M298H1uLQQ9t6nLnQz6MwXjssBlC2-S2jamacUCb74LfjV1M5GV25nQX8eq7zrO3x4f18rlYvT69LBeromGiHAptLHCHgmniqKWiEpIQRCGNRGZEI0pbG9S1JSV3JTLpKukMMppSTpqGzbPb49y0ej9iHNS2jQ12ne7Rj1FBJaAiAiRL6M0vdOPH0KfrFOVM1pILXv5HAa8SRFhdJQqOVBN8jAGd2oV2q8NBAVGTBTVZUEDVZEFNFlKGHDO4Te_s7J-RH-LYF7j_iVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469840396</pqid></control><display><type>article</type><title>Liquid hydrogen tank considerations for turboelectric distributed propulsion</title><source>Emerald A-Z Current Journals</source><creator>Raja Sekaran, Paulas ; S. Gohardani, Amir ; Doulgeris, Georgios ; Singh, Riti</creator><creatorcontrib>Raja Sekaran, Paulas ; S. Gohardani, Amir ; Doulgeris, Georgios ; Singh, Riti</creatorcontrib><description>Purpose – This article aims to investigate a selected number of liquid hydrogen storage tank parameters in a turboelectric distributed propulsion concept. Design/methodology/approach – In this research study, tank structure, tank geometry, tank materials and additional physical phenomenon such as hydrogen boil-off and permeation are considered. A parametric analysis of different insulation foams is also performed throughout the design process of a lightweight liquid hydrogen storage tank. Findings – Based on the mass of boil-off and foam weight, phenolic foam exhibited better characteristics amongst the five foam insulation materials considered in this particular study. Practical implications – Liquid hydrogen occupies 4.2 times the volume of jet fuel for the same amount of energy. This suggests that a notable tank size is expected. Nonetheless, as jet fuel weighs 2.9 times more than liquid hydrogen for the same amount of energy, this reduced weight aspect partly compensates for the increased tank size. Originality/value – In this article, potential insulation materials for liquid hydrogen storage tanks are highlighted and compared utilizing a presented methodology.</description><identifier>ISSN: 1748-8842</identifier><identifier>ISSN: 0002-2667</identifier><identifier>EISSN: 1758-4213</identifier><identifier>DOI: 10.1108/AEAT-12-2011-0195</identifier><identifier>CODEN: AATEEB</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Aerospace engineering ; Air transportation industry ; Aircraft ; Aircraft industry ; Airports ; Aluminum ; Aviation ; Carbon dioxide ; Energy consumption ; Engineering ; Fossil fuels ; Gas turbines ; Heat conductivity ; Heat transfer ; High temperature superconductors ; Hydrogen ; Hydrogen storage ; Insulation ; Jet engine fuels ; Liquid hydrogen ; Methodology ; Parametric analysis ; Plastic foam ; Propulsion ; Radiation ; Storage tanks ; Studies ; Tank geometry ; Tanks ; Weight reduction ; Yield stress</subject><ispartof>Aircraft Engineering and Aerospace Technology, 2014-01, Vol.86 (1), p.67-75</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2014</rights><rights>Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-abd14fe73a0f2d2767800ee78b8e3b7c75d9bea9d054f5e38f68fbe3214ff8bc3</citedby><cites>FETCH-LOGICAL-c375t-abd14fe73a0f2d2767800ee78b8e3b7c75d9bea9d054f5e38f68fbe3214ff8bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,967,27924,27925</link.rule.ids></links><search><creatorcontrib>Raja Sekaran, Paulas</creatorcontrib><creatorcontrib>S. Gohardani, Amir</creatorcontrib><creatorcontrib>Doulgeris, Georgios</creatorcontrib><creatorcontrib>Singh, Riti</creatorcontrib><title>Liquid hydrogen tank considerations for turboelectric distributed propulsion</title><title>Aircraft Engineering and Aerospace Technology</title><description>Purpose – This article aims to investigate a selected number of liquid hydrogen storage tank parameters in a turboelectric distributed propulsion concept. Design/methodology/approach – In this research study, tank structure, tank geometry, tank materials and additional physical phenomenon such as hydrogen boil-off and permeation are considered. A parametric analysis of different insulation foams is also performed throughout the design process of a lightweight liquid hydrogen storage tank. Findings – Based on the mass of boil-off and foam weight, phenolic foam exhibited better characteristics amongst the five foam insulation materials considered in this particular study. Practical implications – Liquid hydrogen occupies 4.2 times the volume of jet fuel for the same amount of energy. This suggests that a notable tank size is expected. Nonetheless, as jet fuel weighs 2.9 times more than liquid hydrogen for the same amount of energy, this reduced weight aspect partly compensates for the increased tank size. Originality/value – In this article, potential insulation materials for liquid hydrogen storage tanks are highlighted and compared utilizing a presented methodology.</description><subject>Aerospace engineering</subject><subject>Air transportation industry</subject><subject>Aircraft</subject><subject>Aircraft industry</subject><subject>Airports</subject><subject>Aluminum</subject><subject>Aviation</subject><subject>Carbon dioxide</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Fossil fuels</subject><subject>Gas turbines</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High temperature superconductors</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Insulation</subject><subject>Jet engine fuels</subject><subject>Liquid hydrogen</subject><subject>Methodology</subject><subject>Parametric analysis</subject><subject>Plastic foam</subject><subject>Propulsion</subject><subject>Radiation</subject><subject>Storage tanks</subject><subject>Studies</subject><subject>Tank geometry</subject><subject>Tanks</subject><subject>Weight reduction</subject><subject>Yield stress</subject><issn>1748-8842</issn><issn>0002-2667</issn><issn>1758-4213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PwzAQhiMEEqXwA9gisbAEfLYTO2NV8SVVYimzZcdnSEnj1k6G_nsclQWEmO6G57073ZNl10DuAIi8Xzws1gXQghKAgkBdnmQzEKUsOAV2OvVcFlJyep5dxLghBKqSsFm2WrX7sbX5x8EG_459Puj-M298H1uLQQ9t6nLnQz6MwXjssBlC2-S2jamacUCb74LfjV1M5GV25nQX8eq7zrO3x4f18rlYvT69LBeromGiHAptLHCHgmniqKWiEpIQRCGNRGZEI0pbG9S1JSV3JTLpKukMMppSTpqGzbPb49y0ej9iHNS2jQ12ne7Rj1FBJaAiAiRL6M0vdOPH0KfrFOVM1pILXv5HAa8SRFhdJQqOVBN8jAGd2oV2q8NBAVGTBTVZUEDVZEFNFlKGHDO4Te_s7J-RH-LYF7j_iVE</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Raja Sekaran, Paulas</creator><creator>S. Gohardani, Amir</creator><creator>Doulgeris, Georgios</creator><creator>Singh, Riti</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0F</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140101</creationdate><title>Liquid hydrogen tank considerations for turboelectric distributed propulsion</title><author>Raja Sekaran, Paulas ; S. Gohardani, Amir ; Doulgeris, Georgios ; Singh, Riti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-abd14fe73a0f2d2767800ee78b8e3b7c75d9bea9d054f5e38f68fbe3214ff8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace engineering</topic><topic>Air transportation industry</topic><topic>Aircraft</topic><topic>Aircraft industry</topic><topic>Airports</topic><topic>Aluminum</topic><topic>Aviation</topic><topic>Carbon dioxide</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Fossil fuels</topic><topic>Gas turbines</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High temperature superconductors</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Insulation</topic><topic>Jet engine fuels</topic><topic>Liquid hydrogen</topic><topic>Methodology</topic><topic>Parametric analysis</topic><topic>Plastic foam</topic><topic>Propulsion</topic><topic>Radiation</topic><topic>Storage tanks</topic><topic>Studies</topic><topic>Tank geometry</topic><topic>Tanks</topic><topic>Weight reduction</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja Sekaran, Paulas</creatorcontrib><creatorcontrib>S. Gohardani, Amir</creatorcontrib><creatorcontrib>Doulgeris, Georgios</creatorcontrib><creatorcontrib>Singh, Riti</creatorcontrib><collection>CrossRef</collection><collection>Career &amp; Technical Education Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Aircraft Engineering and Aerospace Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja Sekaran, Paulas</au><au>S. Gohardani, Amir</au><au>Doulgeris, Georgios</au><au>Singh, Riti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid hydrogen tank considerations for turboelectric distributed propulsion</atitle><jtitle>Aircraft Engineering and Aerospace Technology</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>86</volume><issue>1</issue><spage>67</spage><epage>75</epage><pages>67-75</pages><issn>1748-8842</issn><issn>0002-2667</issn><eissn>1758-4213</eissn><coden>AATEEB</coden><abstract>Purpose – This article aims to investigate a selected number of liquid hydrogen storage tank parameters in a turboelectric distributed propulsion concept. Design/methodology/approach – In this research study, tank structure, tank geometry, tank materials and additional physical phenomenon such as hydrogen boil-off and permeation are considered. A parametric analysis of different insulation foams is also performed throughout the design process of a lightweight liquid hydrogen storage tank. Findings – Based on the mass of boil-off and foam weight, phenolic foam exhibited better characteristics amongst the five foam insulation materials considered in this particular study. Practical implications – Liquid hydrogen occupies 4.2 times the volume of jet fuel for the same amount of energy. This suggests that a notable tank size is expected. Nonetheless, as jet fuel weighs 2.9 times more than liquid hydrogen for the same amount of energy, this reduced weight aspect partly compensates for the increased tank size. Originality/value – In this article, potential insulation materials for liquid hydrogen storage tanks are highlighted and compared utilizing a presented methodology.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/AEAT-12-2011-0195</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-8842
ispartof Aircraft Engineering and Aerospace Technology, 2014-01, Vol.86 (1), p.67-75
issn 1748-8842
0002-2667
1758-4213
language eng
recordid cdi_proquest_miscellaneous_1671607183
source Emerald A-Z Current Journals
subjects Aerospace engineering
Air transportation industry
Aircraft
Aircraft industry
Airports
Aluminum
Aviation
Carbon dioxide
Energy consumption
Engineering
Fossil fuels
Gas turbines
Heat conductivity
Heat transfer
High temperature superconductors
Hydrogen
Hydrogen storage
Insulation
Jet engine fuels
Liquid hydrogen
Methodology
Parametric analysis
Plastic foam
Propulsion
Radiation
Storage tanks
Studies
Tank geometry
Tanks
Weight reduction
Yield stress
title Liquid hydrogen tank considerations for turboelectric distributed propulsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20hydrogen%20tank%20considerations%20for%20turboelectric%20distributed%20propulsion&rft.jtitle=Aircraft%20Engineering%20and%20Aerospace%20Technology&rft.au=Raja%20Sekaran,%20Paulas&rft.date=2014-01-01&rft.volume=86&rft.issue=1&rft.spage=67&rft.epage=75&rft.pages=67-75&rft.issn=1748-8842&rft.eissn=1758-4213&rft.coden=AATEEB&rft_id=info:doi/10.1108/AEAT-12-2011-0195&rft_dat=%3Cproquest_emera%3E2438984745%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469840396&rft_id=info:pmid/&rfr_iscdi=true