Multifractal formalism for Benedicks–Carleson quadratic maps

For a positive measure set of non-uniformly expanding quadratic maps on the interval we effect a multifractal formalism, i.e., decompose the phase space into level sets of time averages of a given continuous function and consider the associated Birkhoff spectrum which encodes this decomposition. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2014-08, Vol.34 (4), p.1116-1141
Hauptverfasser: CHUNG, YONG MOO, TAKAHASI, HIROKI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a positive measure set of non-uniformly expanding quadratic maps on the interval we effect a multifractal formalism, i.e., decompose the phase space into level sets of time averages of a given continuous function and consider the associated Birkhoff spectrum which encodes this decomposition. We derive a formula which relates the Hausdorff dimension of level sets to entropies and Lyapunov exponents of invariant probability measures, and then use this formula to show that the spectrum is continuous. In order to estimate the Hausdorff dimension from above, one has to ‘see’ sufficiently many points. To this end, we construct a family of towers. Using these towers we establish a large deviation principle of empirical distributions, with Lebesgue as a reference measure.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2012.188