On frequency response and stability of an optical front-end with variable-gain current amplifier using a bipolar junction transistor translinear loop

ABSTRACT A comparative analysis of implementations of an optical front–end with variable transimpedance intended for optical storage systems in two different BiCMOS technologies is given in this article. The variable‐gain current amplifier within the optical front–end is designed by using a modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of circuit theory and applications 2013-08, Vol.41 (8), p.792-817
Hauptverfasser: Tadić, Nikša, Zogović, Milena, Gaberl, Wolfgang, Zimmermann, Horst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT A comparative analysis of implementations of an optical front–end with variable transimpedance intended for optical storage systems in two different BiCMOS technologies is given in this article. The variable‐gain current amplifier within the optical front–end is designed by using a modified balanced type of the bipolar junction transistors translinear loop. The predictions of the optical front–end mathematical models are confirmed by the measured results. They show that a 0.6‐µm BiCMOS silicon technology implementation with worse bipolar junction transistor parameters (unity‐gain frequency, current gain β, and the Early voltage) gives much better stability than a 0.35‐µm BiCMOS silicon‐germanium technology implementation. As a consequence, the useful measured transimpedance dynamic range of the proposed optical front–end is 17.5 times larger in the 0.6‐µm BiCMOS silicon technology than that in the 0.35‐µm BiCMOS silicon‐germanium technology. Copyright © 2012 John Wiley & Sons, Ltd. A comparative analysis of implementations of an optical front–end with variable transimpedance in two different BiCMOS technologies is given. The variable‐gain current amplifier within the optical front–end is designed by using a modified balanced type of the bipolar junction transistors translinear loop. The useful measured transimpedance dynamic range of the proposed optical front–end is 17.5 times larger in the 0.6‐µm BiCMOS silicon technology than that in the 0.35‐µm BiCMOS silicon‐germanium technology because of the much better stability of the silicon implementation.
ISSN:0098-9886
1097-007X
DOI:10.1002/cta.817