Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances

In recent years, immense efforts in the organic electronics field have led to unprecedented progress and to devices of ever increasing performance. Despite these advances, new opportunities are sought in order to widen the applications of organic-based technologies and expand their functionalities a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-01, Vol.2 (28), p.10818-10824
Hauptverfasser: Scaccabarozzi, A. D., Stingelin, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, immense efforts in the organic electronics field have led to unprecedented progress and to devices of ever increasing performance. Despite these advances, new opportunities are sought in order to widen the applications of organic-based technologies and expand their functionalities and features. For this purpose, use of multicomponent systems seems an interesting approach in view of, e.g. , increasing the mechanical flexibility and stability of organic electronic products as well as introducing other features such as self-encapsulation. One specific strategy is based on blending polymeric insulators with organic semiconductors; which has led to a desired improvement of the mechanical properties of organic devices, producing in certain scenarios robust and stable architectures. Here we discuss the working principle of semiconductor:insulator blends, examining the different approaches that have recently been reported in literature. We illustrate how organic field-effect transistors (OFET)s and organic solar cells (OPV)s can be fabricated with such systems without detrimental effects on the resulting device characteristics even at high contents of the insulator. Furthermore, we review the various properties that can be enhanced and/or manipulated by blending including air stability, mechanical toughness, H- vs. J-aggregation, etc.
ISSN:2050-7488
2050-7496
DOI:10.1039/C4TA01065E