Development of a generative model of magnetoencephalography noise that enables brain signal extraction from single-epoch data

We presented a method of rejecting sensor-specific and environmental noise during magnetoencephalography (MEG) measurement that enables the extraction of brain signals from single-epoch data. The method assumes a parametric generative model of MEG data. The model’s optimal parameters were determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2013-08, Vol.51 (8), p.937-951
Hauptverfasser: Uno, Yutaka, Amano, Kaoru, Takeda, Tsunehiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We presented a method of rejecting sensor-specific and environmental noise during magnetoencephalography (MEG) measurement that enables the extraction of brain signals from single-epoch data. The method assumes a parametric generative model of MEG data. The model’s optimal parameters were determined from single-epoch data, and noise reduction was performed by the decomposition of data within the optimal model. We confirmed our method’s validity through multiple experiments. Moreover, we compared our method’s performance with that of several previous noise-reduction methods. Finally, we confirmed that the proposed method followed by spatial filtering reduced noise more efficiently.
ISSN:0140-0118
1741-0444
DOI:10.1007/s11517-013-1069-y