Complexity of Path-Following Methods for the Eigenvalue Problem
A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2014-04, Vol.14 (2), p.185-236 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Foundations of computational mathematics |
container_volume | 14 |
creator | Armentano, Diego |
description | A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s
γ
-theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric. |
doi_str_mv | 10.1007/s10208-013-9185-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671584894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A378557835</galeid><sourcerecordid>A378557835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</originalsourceid><addsrcrecordid>eNp1ks1q3DAUhU1IoEnaB-jOkE2zUKprWZa8KmFI0kBKQ9KuhWxfeRxkayLJ-Xn7apjSdsoELfTD913E4WTZR6BnQKn4HIAWVBIKjNQgOeF72SFUwAljku3_OQv-LjsK4YFS4DWUh9mXhRtXFl-G-Jo7k9_quCSXzlr3PEx9_g3j0nUhN87ncYn5xdDj9KTtjPmtd43F8X12YLQN-OH3fpz9vLz4sfhKbr5fXS_Ob0hbShlJqY1uBO2KqtKgdSEYMzU0YJjEhnWtMDVWtADWdLKmVQ0USlNqLOoOMF3YcfZpM3fl3eOMIapxCC1aqyd0c1BQCeCylHWZ0JP_0Ac3-yn9TgGnsiiAcvGX6rVFNUzGRa_b9VB1zoTkXEjGE0V2UCkE9Nq6Cc2Qnrf4sx18Wh2OQ7tTON0SEhPxJfZ6DkFd399ts7BhW-9C8GjUyg-j9q8KqFq3QG1aoFJeat0CtXaKjRMSO_Xo_wnjTekXaAGwFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508221057</pqid></control><display><type>article</type><title>Complexity of Path-Following Methods for the Eigenvalue Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Armentano, Diego</creator><creatorcontrib>Armentano, Diego</creatorcontrib><description>A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s
γ
-theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-013-9185-5</identifier><identifier>CODEN: FCMOA3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Complexity ; Computation ; Computer Science ; Economics ; Eigenvalues ; Foundations ; Functions, Inverse ; Homotopy theory ; Invariants ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical models ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Texts ; Topological manifolds</subject><ispartof>Foundations of computational mathematics, 2014-04, Vol.14 (2), p.185-236</ispartof><rights>SFoCM 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</citedby><cites>FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-013-9185-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-013-9185-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Armentano, Diego</creatorcontrib><title>Complexity of Path-Following Methods for the Eigenvalue Problem</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s
γ
-theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.</description><subject>Applications of Mathematics</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Foundations</subject><subject>Functions, Inverse</subject><subject>Homotopy theory</subject><subject>Invariants</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Texts</subject><subject>Topological manifolds</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1ks1q3DAUhU1IoEnaB-jOkE2zUKprWZa8KmFI0kBKQ9KuhWxfeRxkayLJ-Xn7apjSdsoELfTD913E4WTZR6BnQKn4HIAWVBIKjNQgOeF72SFUwAljku3_OQv-LjsK4YFS4DWUh9mXhRtXFl-G-Jo7k9_quCSXzlr3PEx9_g3j0nUhN87ncYn5xdDj9KTtjPmtd43F8X12YLQN-OH3fpz9vLz4sfhKbr5fXS_Ob0hbShlJqY1uBO2KqtKgdSEYMzU0YJjEhnWtMDVWtADWdLKmVQ0USlNqLOoOMF3YcfZpM3fl3eOMIapxCC1aqyd0c1BQCeCylHWZ0JP_0Ac3-yn9TgGnsiiAcvGX6rVFNUzGRa_b9VB1zoTkXEjGE0V2UCkE9Nq6Cc2Qnrf4sx18Wh2OQ7tTON0SEhPxJfZ6DkFd399ts7BhW-9C8GjUyg-j9q8KqFq3QG1aoFJeat0CtXaKjRMSO_Xo_wnjTekXaAGwFQ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Armentano, Diego</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Complexity of Path-Following Methods for the Eigenvalue Problem</title><author>Armentano, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Foundations</topic><topic>Functions, Inverse</topic><topic>Homotopy theory</topic><topic>Invariants</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Texts</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armentano, Diego</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armentano, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of Path-Following Methods for the Eigenvalue Problem</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>14</volume><issue>2</issue><spage>185</spage><epage>236</epage><pages>185-236</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><coden>FCMOA3</coden><abstract>A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s
γ
-theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10208-013-9185-5</doi><tpages>52</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2014-04, Vol.14 (2), p.185-236 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671584894 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Complexity Computation Computer Science Economics Eigenvalues Foundations Functions, Inverse Homotopy theory Invariants Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical models Mathematical research Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis Polynomials Texts Topological manifolds |
title | Complexity of Path-Following Methods for the Eigenvalue Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20Path-Following%20Methods%20for%20the%20Eigenvalue%20Problem&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Armentano,%20Diego&rft.date=2014-04-01&rft.volume=14&rft.issue=2&rft.spage=185&rft.epage=236&rft.pages=185-236&rft.issn=1615-3375&rft.eissn=1615-3383&rft.coden=FCMOA3&rft_id=info:doi/10.1007/s10208-013-9185-5&rft_dat=%3Cgale_proqu%3EA378557835%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508221057&rft_id=info:pmid/&rft_galeid=A378557835&rfr_iscdi=true |