Complexity of Path-Following Methods for the Eigenvalue Problem

A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2014-04, Vol.14 (2), p.185-236
1. Verfasser: Armentano, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 185
container_title Foundations of computational mathematics
container_volume 14
creator Armentano, Diego
description A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.
doi_str_mv 10.1007/s10208-013-9185-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671584894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A378557835</galeid><sourcerecordid>A378557835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</originalsourceid><addsrcrecordid>eNp1ks1q3DAUhU1IoEnaB-jOkE2zUKprWZa8KmFI0kBKQ9KuhWxfeRxkayLJ-Xn7apjSdsoELfTD913E4WTZR6BnQKn4HIAWVBIKjNQgOeF72SFUwAljku3_OQv-LjsK4YFS4DWUh9mXhRtXFl-G-Jo7k9_quCSXzlr3PEx9_g3j0nUhN87ncYn5xdDj9KTtjPmtd43F8X12YLQN-OH3fpz9vLz4sfhKbr5fXS_Ob0hbShlJqY1uBO2KqtKgdSEYMzU0YJjEhnWtMDVWtADWdLKmVQ0USlNqLOoOMF3YcfZpM3fl3eOMIapxCC1aqyd0c1BQCeCylHWZ0JP_0Ac3-yn9TgGnsiiAcvGX6rVFNUzGRa_b9VB1zoTkXEjGE0V2UCkE9Nq6Cc2Qnrf4sx18Wh2OQ7tTON0SEhPxJfZ6DkFd399ts7BhW-9C8GjUyg-j9q8KqFq3QG1aoFJeat0CtXaKjRMSO_Xo_wnjTekXaAGwFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508221057</pqid></control><display><type>article</type><title>Complexity of Path-Following Methods for the Eigenvalue Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Armentano, Diego</creator><creatorcontrib>Armentano, Diego</creatorcontrib><description>A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-013-9185-5</identifier><identifier>CODEN: FCMOA3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Complexity ; Computation ; Computer Science ; Economics ; Eigenvalues ; Foundations ; Functions, Inverse ; Homotopy theory ; Invariants ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical models ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Numerical Analysis ; Polynomials ; Texts ; Topological manifolds</subject><ispartof>Foundations of computational mathematics, 2014-04, Vol.14 (2), p.185-236</ispartof><rights>SFoCM 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</citedby><cites>FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-013-9185-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-013-9185-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Armentano, Diego</creatorcontrib><title>Complexity of Path-Following Methods for the Eigenvalue Problem</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.</description><subject>Applications of Mathematics</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Foundations</subject><subject>Functions, Inverse</subject><subject>Homotopy theory</subject><subject>Invariants</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Texts</subject><subject>Topological manifolds</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1ks1q3DAUhU1IoEnaB-jOkE2zUKprWZa8KmFI0kBKQ9KuhWxfeRxkayLJ-Xn7apjSdsoELfTD913E4WTZR6BnQKn4HIAWVBIKjNQgOeF72SFUwAljku3_OQv-LjsK4YFS4DWUh9mXhRtXFl-G-Jo7k9_quCSXzlr3PEx9_g3j0nUhN87ncYn5xdDj9KTtjPmtd43F8X12YLQN-OH3fpz9vLz4sfhKbr5fXS_Ob0hbShlJqY1uBO2KqtKgdSEYMzU0YJjEhnWtMDVWtADWdLKmVQ0USlNqLOoOMF3YcfZpM3fl3eOMIapxCC1aqyd0c1BQCeCylHWZ0JP_0Ac3-yn9TgGnsiiAcvGX6rVFNUzGRa_b9VB1zoTkXEjGE0V2UCkE9Nq6Cc2Qnrf4sx18Wh2OQ7tTON0SEhPxJfZ6DkFd399ts7BhW-9C8GjUyg-j9q8KqFq3QG1aoFJeat0CtXaKjRMSO_Xo_wnjTekXaAGwFQ</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Armentano, Diego</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Complexity of Path-Following Methods for the Eigenvalue Problem</title><author>Armentano, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4afab70d266a1aa2733f91b1f38eb3dc7f9e60213bd890691014f4ae29d1e1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Foundations</topic><topic>Functions, Inverse</topic><topic>Homotopy theory</topic><topic>Invariants</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Texts</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armentano, Diego</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armentano, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of Path-Following Methods for the Eigenvalue Problem</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>14</volume><issue>2</issue><spage>185</spage><epage>236</epage><pages>185-236</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><coden>FCMOA3</coden><abstract>A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10208-013-9185-5</doi><tpages>52</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2014-04, Vol.14 (2), p.185-236
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_miscellaneous_1671584894
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Complexity
Computation
Computer Science
Economics
Eigenvalues
Foundations
Functions, Inverse
Homotopy theory
Invariants
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical models
Mathematical research
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Polynomials
Texts
Topological manifolds
title Complexity of Path-Following Methods for the Eigenvalue Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20Path-Following%20Methods%20for%20the%20Eigenvalue%20Problem&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Armentano,%20Diego&rft.date=2014-04-01&rft.volume=14&rft.issue=2&rft.spage=185&rft.epage=236&rft.pages=185-236&rft.issn=1615-3375&rft.eissn=1615-3383&rft.coden=FCMOA3&rft_id=info:doi/10.1007/s10208-013-9185-5&rft_dat=%3Cgale_proqu%3EA378557835%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508221057&rft_id=info:pmid/&rft_galeid=A378557835&rfr_iscdi=true