Complexity of Path-Following Methods for the Eigenvalue Problem

A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2014-04, Vol.14 (2), p.185-236
1. Verfasser: Armentano, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-013-9185-5