Complexity of Path-Following Methods for the Eigenvalue Problem
A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s γ -...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2014-04, Vol.14 (2), p.185-236 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A unitarily invariant projective framework is introduced to analyze the complexity of path-following methods for the eigenvalue problem. A condition number, and its relation to the distance to ill-posedness, is given. A Newton map appropriate for this context is defined, and a version of Smale’s
γ
-theorem is proven. The main result of this paper bounds the complexity of path-following methods in terms of the length of the path in the condition metric. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-013-9185-5 |