A robust compressive sensing based technique for reconstruction of sparse radar scenes

Pulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and stationary targets. For efficient processing of radar returns, delay–Doppler plane is discretized and FFT techniques are employed to compute matched filter output on this discrete grid. However, for tar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2014-04, Vol.27, p.23-32
Hauptverfasser: Teke, Oguzhan, Gurbuz, Ali Cafer, Arikan, Orhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulse-Doppler radar has been successfully applied to surveillance and tracking of both moving and stationary targets. For efficient processing of radar returns, delay–Doppler plane is discretized and FFT techniques are employed to compute matched filter output on this discrete grid. However, for targets whose delay–Doppler values do not coincide with the computation grid, the detection performance degrades considerably. Especially for detecting strong and closely spaced targets this causes miss detections and false alarms. This phenomena is known as the off-grid problem. Although compressive sensing based techniques provide sparse and high resolution results at sub-Nyquist sampling rates, straightforward application of these techniques is significantly more sensitive to the off-grid problem. Here a novel parameter perturbation based sparse reconstruction technique is proposed for robust delay–Doppler radar processing even under the off-grid case. Although the perturbation idea is general and can be implemented in association with other greedy techniques, presently it is used within an orthogonal matching pursuit (OMP) framework. In the proposed technique, the selected dictionary parameters are perturbed towards directions to decrease the orthogonal residual norm. The obtained results show that accurate and sparse reconstructions can be obtained for off-grid multi target cases. A new performance metric based on Kullback–Leibler Divergence (KLD) is proposed to better characterize the error between actual and reconstructed parameter spaces. Increased performance with lower reconstruction errors are obtained for all the tested performance criteria for the proposed technique compared to conventional OMP and ℓ1 minimization techniques.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2013.12.008