Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow

We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2013-05, Vol.25 (5)
Hauptverfasser: Yeo, Kyongmin, Maxey, Martin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 25
creator Yeo, Kyongmin
Maxey, Martin R
description We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma and the bulk volume fraction phi in a homogeneous linear shear flow, in which \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is defined from the density rho f and dynamic viscosity mu of the fluid, particle radius a, and the shear rate \documentclass[12pt]{minimal}\begin{document}$\dot{\gamma }$\end{document} gamma as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}= \rho _f \dot{\gamma } a arrow up / \mu$\end{document}Re gamma = rho f gamma a2/ mu . It is shown that the velocity fluctuations in the velocity-gradient and vorticity directions decrease at larger \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma . However, the particle self-diffusivity is found to be an increasing function of \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma as the motion of the suspended particles develops a longer auto-correlation under finite fluid inertia. It is shown that finite-inertia suspension flows are shear-thickening and the particle stresses become highly intermittent as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma increases. To study the detailed changes in the suspension microstructure and rheology, we introduce a particle-stress-weighted pair-distribution function. The stress-weighted pair-distribution function clearly shows that the increase of the effective viscosity at high \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is mostly related to the strong normal lubrication interaction in the compressive principal axis of the shear flow.
doi_str_mv 10.1063/1.4802844
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671581392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419369879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d4703b5160ccd3e18891e64eb2747acaaa35310f86bb7fb3328a4094d21de8a83</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsHv0GOCq7mbdIke5T6FwqC6HnJZt-2K7tJzdtF-u1tbe-eZg4_hplh7BLELQgt7-BWWZFbpY7YBIQtMqO1Pt55IzKtJZyyM6IvIYQscj1h-LAJrm89cRdqnlYYu7jc8NhwH4PHMCQ3YH3Dmza0A2bvuAmxqykLY19h4jTSGgO1MRBvA3d8Ffu4xIBxJE4rdIk3Xfw5ZyeN6wgvDjpln0-PH_OXbPH2_Dq_X2ReahiyWhkhqxlo4X0tEawtALXCKjfKOO-ckzMJorG6qkxTSZlbp0Sh6hxqtM7KKbva565T_B6RhrJvyWPXub9GJWgDMwvb6f-jCgqpC2uKLXq9R32KRAmbcp3a3qVNCaLcvV5CeXhd_gJ_QnTa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419369879</pqid></control><display><type>article</type><title>Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yeo, Kyongmin ; Maxey, Martin R</creator><creatorcontrib>Yeo, Kyongmin ; Maxey, Martin R</creatorcontrib><description>We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma and the bulk volume fraction phi in a homogeneous linear shear flow, in which \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is defined from the density rho f and dynamic viscosity mu of the fluid, particle radius a, and the shear rate \documentclass[12pt]{minimal}\begin{document}$\dot{\gamma }$\end{document} gamma as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}= \rho _f \dot{\gamma } a arrow up / \mu$\end{document}Re gamma = rho f gamma a2/ mu . It is shown that the velocity fluctuations in the velocity-gradient and vorticity directions decrease at larger \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma . However, the particle self-diffusivity is found to be an increasing function of \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma as the motion of the suspended particles develops a longer auto-correlation under finite fluid inertia. It is shown that finite-inertia suspension flows are shear-thickening and the particle stresses become highly intermittent as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma increases. To study the detailed changes in the suspension microstructure and rheology, we introduce a particle-stress-weighted pair-distribution function. The stress-weighted pair-distribution function clearly shows that the increase of the effective viscosity at high \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is mostly related to the strong normal lubrication interaction in the compressive principal axis of the shear flow.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4802844</identifier><language>eng</language><subject>Autocorrelation ; Dynamic tests ; Dynamics ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Rheology ; Shear flow</subject><ispartof>Physics of fluids (1994), 2013-05, Vol.25 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d4703b5160ccd3e18891e64eb2747acaaa35310f86bb7fb3328a4094d21de8a83</citedby><cites>FETCH-LOGICAL-c361t-d4703b5160ccd3e18891e64eb2747acaaa35310f86bb7fb3328a4094d21de8a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yeo, Kyongmin</creatorcontrib><creatorcontrib>Maxey, Martin R</creatorcontrib><title>Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow</title><title>Physics of fluids (1994)</title><description>We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma and the bulk volume fraction phi in a homogeneous linear shear flow, in which \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is defined from the density rho f and dynamic viscosity mu of the fluid, particle radius a, and the shear rate \documentclass[12pt]{minimal}\begin{document}$\dot{\gamma }$\end{document} gamma as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}= \rho _f \dot{\gamma } a arrow up / \mu$\end{document}Re gamma = rho f gamma a2/ mu . It is shown that the velocity fluctuations in the velocity-gradient and vorticity directions decrease at larger \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma . However, the particle self-diffusivity is found to be an increasing function of \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma as the motion of the suspended particles develops a longer auto-correlation under finite fluid inertia. It is shown that finite-inertia suspension flows are shear-thickening and the particle stresses become highly intermittent as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma increases. To study the detailed changes in the suspension microstructure and rheology, we introduce a particle-stress-weighted pair-distribution function. The stress-weighted pair-distribution function clearly shows that the increase of the effective viscosity at high \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is mostly related to the strong normal lubrication interaction in the compressive principal axis of the shear flow.</description><subject>Autocorrelation</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Rheology</subject><subject>Shear flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsHv0GOCq7mbdIke5T6FwqC6HnJZt-2K7tJzdtF-u1tbe-eZg4_hplh7BLELQgt7-BWWZFbpY7YBIQtMqO1Pt55IzKtJZyyM6IvIYQscj1h-LAJrm89cRdqnlYYu7jc8NhwH4PHMCQ3YH3Dmza0A2bvuAmxqykLY19h4jTSGgO1MRBvA3d8Ffu4xIBxJE4rdIk3Xfw5ZyeN6wgvDjpln0-PH_OXbPH2_Dq_X2ReahiyWhkhqxlo4X0tEawtALXCKjfKOO-ckzMJorG6qkxTSZlbp0Sh6hxqtM7KKbva565T_B6RhrJvyWPXub9GJWgDMwvb6f-jCgqpC2uKLXq9R32KRAmbcp3a3qVNCaLcvV5CeXhd_gJ_QnTa</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Yeo, Kyongmin</creator><creator>Maxey, Martin R</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow</title><author>Yeo, Kyongmin ; Maxey, Martin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d4703b5160ccd3e18891e64eb2747acaaa35310f86bb7fb3328a4094d21de8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Autocorrelation</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Rheology</topic><topic>Shear flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeo, Kyongmin</creatorcontrib><creatorcontrib>Maxey, Martin R</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeo, Kyongmin</au><au>Maxey, Martin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>25</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><abstract>We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma and the bulk volume fraction phi in a homogeneous linear shear flow, in which \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is defined from the density rho f and dynamic viscosity mu of the fluid, particle radius a, and the shear rate \documentclass[12pt]{minimal}\begin{document}$\dot{\gamma }$\end{document} gamma as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}= \rho _f \dot{\gamma } a arrow up / \mu$\end{document}Re gamma = rho f gamma a2/ mu . It is shown that the velocity fluctuations in the velocity-gradient and vorticity directions decrease at larger \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma . However, the particle self-diffusivity is found to be an increasing function of \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma as the motion of the suspended particles develops a longer auto-correlation under finite fluid inertia. It is shown that finite-inertia suspension flows are shear-thickening and the particle stresses become highly intermittent as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma increases. To study the detailed changes in the suspension microstructure and rheology, we introduce a particle-stress-weighted pair-distribution function. The stress-weighted pair-distribution function clearly shows that the increase of the effective viscosity at high \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is mostly related to the strong normal lubrication interaction in the compressive principal axis of the shear flow.</abstract><doi>10.1063/1.4802844</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2013-05, Vol.25 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_miscellaneous_1671581392
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Autocorrelation
Dynamic tests
Dynamics
Fluid dynamics
Fluid flow
Mathematical analysis
Rheology
Shear flow
title Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20and%20rheology%20of%20concentrated,%20finite-Reynolds-number%20suspensions%20in%20a%20homogeneous%20shear%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Yeo,%20Kyongmin&rft.date=2013-05-01&rft.volume=25&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4802844&rft_dat=%3Cproquest_cross%3E1419369879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419369879&rft_id=info:pmid/&rfr_iscdi=true