Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow

We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2013-05, Vol.25 (5)
Hauptverfasser: Yeo, Kyongmin, Maxey, Martin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the lubrication-corrected force-coupling method for the simulation of concentrated suspensions under finite inertia. Suspension dynamics are investigated as a function of the particle-scale Reynolds number \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma and the bulk volume fraction phi in a homogeneous linear shear flow, in which \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is defined from the density rho f and dynamic viscosity mu of the fluid, particle radius a, and the shear rate \documentclass[12pt]{minimal}\begin{document}$\dot{\gamma }$\end{document} gamma as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}= \rho _f \dot{\gamma } a arrow up / \mu$\end{document}Re gamma = rho f gamma a2/ mu . It is shown that the velocity fluctuations in the velocity-gradient and vorticity directions decrease at larger \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma . However, the particle self-diffusivity is found to be an increasing function of \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma as the motion of the suspended particles develops a longer auto-correlation under finite fluid inertia. It is shown that finite-inertia suspension flows are shear-thickening and the particle stresses become highly intermittent as \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma increases. To study the detailed changes in the suspension microstructure and rheology, we introduce a particle-stress-weighted pair-distribution function. The stress-weighted pair-distribution function clearly shows that the increase of the effective viscosity at high \documentclass[12pt]{minimal}\begin{document}$Re_{\dot{\gamma }}$\end{document}Re gamma is mostly related to the strong normal lubrication interaction in the compressive principal axis of the shear flow.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.4802844