Maps in Multiple Belief Change
Multiple Belief Change extends the classical AGM framework for Belief Revision introduced by Alchourron, Gardenfors, and Makinson in the early ’80s. The extended framework includes epistemic input represented as a (possibly infinite) set of sentences , as opposed to a single sentence assumed in the...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computational logic 2012-10, Vol.13 (4), p.1-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple Belief Change extends the classical AGM framework for Belief Revision introduced by Alchourron, Gardenfors, and Makinson in the early ’80s. The extended framework includes epistemic input represented as a (possibly infinite)
set of sentences
, as opposed to a
single sentence
assumed in the original framework. The transition from single to multiple epistemic input worked out well for the operation of belief revision. The AGM postulates and the system-of-spheres model were adequately generalized and so was the representation result connecting the two. In the case of belief contraction however, the transition was not as smooth. The generalized postulates for contraction, which were shown to correspond precisely to the generalized
partial meet model
, failed to match up to the generalized
epistemic entrenchment model
. The mismatch was fixed with the addition of an extra postulate, called the
limit postulate
, that relates contraction by multiple epistemic input to a series of contractions by single epistemic input. The new postulate however creates problems on other fronts. First, the limit postulate needs to be mapped into appropriate constraints in the partial meet model. Second, via the Levi and Harper Identities, the new postulate translates into an extra postulate for multiple revision, which in turn needs to be characterized in terms of systems of spheres. Both these open problems are addressed in this article. In addition, the limit postulate is compared with a similar condition in the literature, called (K*F), and is shown to be strictly weaker than it. An interesting aspect of our results is that they reveal a profound connection between rationality in multiple belief change and the notion of an
elementary set
of possible worlds (closely related to the notion of an elementary class of models from classical logic). |
---|---|
ISSN: | 1529-3785 1557-945X |
DOI: | 10.1145/2362355.2362358 |