Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane
Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-06, Vol.13 (6), p.619-623 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 623 |
---|---|
container_issue | 6 |
container_start_page | 619 |
container_title | Nature materials |
container_volume | 13 |
creator | Barile, Christopher J. Tse, Edmund C. M. Li, Ying Sobyra, Thomas B. Zimmerman, Steven C. Hosseini, Ali Gewirth, Andrew A. |
description | Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.
Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst. |
doi_str_mv | 10.1038/nmat3974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671576658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1527326880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAgiruugr9AAl70sJqvNu1RxC9Y0IOeS5pM1krbrEmK9t-bxVUWL54SmId3ZhiEjim5oIQXl32nIi-l2EFTKmQ-F3lOdjd_ShmboIMQ3ghhNMvyfTRhoqBc0GKK3JN30fU4fDRRv2LrPO6cGVoVm36J3ee4hB57MIOOTWL1iBXWbrUCj6EFHb3TKqp2DBFDV4MxYHDTJ_Q61r4xuG5aNSbcpapXPRyiPavaAEebd4Zebm-er-_ni8e7h-urxVyn0eJcWGaUFkoywwTTRBYgrSipKDinRJXEkLRWSayllmjNSiaZpWXJy5pZyAifobPv3JV37wOEWHVN0NC2aQY3hIrmkmYyz7Pif5oxyVleFOvU0z_0zQ2-T4sklSUhONnqrb0LwYOtVr7plB8rSqr1vaqfeyV6sgkc6g7ML_w5UALn3yCkUr8Ev9Xxb9gX7q2eNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558804300</pqid></control><display><type>article</type><title>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Barile, Christopher J. ; Tse, Edmund C. M. ; Li, Ying ; Sobyra, Thomas B. ; Zimmerman, Steven C. ; Hosseini, Ali ; Gewirth, Andrew A.</creator><creatorcontrib>Barile, Christopher J. ; Tse, Edmund C. M. ; Li, Ying ; Sobyra, Thomas B. ; Zimmerman, Steven C. ; Hosseini, Ali ; Gewirth, Andrew A.</creatorcontrib><description>Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.
Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3974</identifier><identifier>PMID: 24813418</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 639/301/299/886 ; Biomaterials ; Catalysis ; CATALYSTS ; Condensed Matter Physics ; Copper ; Copper - chemistry ; Electrochemical Techniques ; Electrochemistry ; Lipid Bilayers - chemistry ; Lipids ; Materials Science ; MEMBRANES ; Nanotechnology ; Optical and Electronic Materials ; Oxidation-Reduction ; OXYGEN ; Oxygen - chemistry ; PHOSPHATES ; Protons ; Reduction ; Self-assembled monolayers ; Switches</subject><ispartof>Nature materials, 2014-06, Vol.13 (6), p.619-623</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</citedby><cites>FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3974$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3974$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24813418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barile, Christopher J.</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sobyra, Thomas B.</creatorcontrib><creatorcontrib>Zimmerman, Steven C.</creatorcontrib><creatorcontrib>Hosseini, Ali</creatorcontrib><creatorcontrib>Gewirth, Andrew A.</creatorcontrib><title>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.
Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.</description><subject>132/122</subject><subject>639/301/299/886</subject><subject>Biomaterials</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Materials Science</subject><subject>MEMBRANES</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation-Reduction</subject><subject>OXYGEN</subject><subject>Oxygen - chemistry</subject><subject>PHOSPHATES</subject><subject>Protons</subject><subject>Reduction</subject><subject>Self-assembled monolayers</subject><subject>Switches</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LxDAQBuAgiruugr9AAl70sJqvNu1RxC9Y0IOeS5pM1krbrEmK9t-bxVUWL54SmId3ZhiEjim5oIQXl32nIi-l2EFTKmQ-F3lOdjd_ShmboIMQ3ghhNMvyfTRhoqBc0GKK3JN30fU4fDRRv2LrPO6cGVoVm36J3ee4hB57MIOOTWL1iBXWbrUCj6EFHb3TKqp2DBFDV4MxYHDTJ_Q61r4xuG5aNSbcpapXPRyiPavaAEebd4Zebm-er-_ni8e7h-urxVyn0eJcWGaUFkoywwTTRBYgrSipKDinRJXEkLRWSayllmjNSiaZpWXJy5pZyAifobPv3JV37wOEWHVN0NC2aQY3hIrmkmYyz7Pif5oxyVleFOvU0z_0zQ2-T4sklSUhONnqrb0LwYOtVr7plB8rSqr1vaqfeyV6sgkc6g7ML_w5UALn3yCkUr8Ev9Xxb9gX7q2eNw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Barile, Christopher J.</creator><creator>Tse, Edmund C. M.</creator><creator>Li, Ying</creator><creator>Sobyra, Thomas B.</creator><creator>Zimmerman, Steven C.</creator><creator>Hosseini, Ali</creator><creator>Gewirth, Andrew A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>H8G</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</title><author>Barile, Christopher J. ; Tse, Edmund C. M. ; Li, Ying ; Sobyra, Thomas B. ; Zimmerman, Steven C. ; Hosseini, Ali ; Gewirth, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>132/122</topic><topic>639/301/299/886</topic><topic>Biomaterials</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Materials Science</topic><topic>MEMBRANES</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation-Reduction</topic><topic>OXYGEN</topic><topic>Oxygen - chemistry</topic><topic>PHOSPHATES</topic><topic>Protons</topic><topic>Reduction</topic><topic>Self-assembled monolayers</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barile, Christopher J.</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sobyra, Thomas B.</creatorcontrib><creatorcontrib>Zimmerman, Steven C.</creatorcontrib><creatorcontrib>Hosseini, Ali</creatorcontrib><creatorcontrib>Gewirth, Andrew A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Copper Technical Reference Library</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barile, Christopher J.</au><au>Tse, Edmund C. M.</au><au>Li, Ying</au><au>Sobyra, Thomas B.</au><au>Zimmerman, Steven C.</au><au>Hosseini, Ali</au><au>Gewirth, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>13</volume><issue>6</issue><spage>619</spage><epage>623</epage><pages>619-623</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.
Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24813418</pmid><doi>10.1038/nmat3974</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-06, Vol.13 (6), p.619-623 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671576658 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 132/122 639/301/299/886 Biomaterials Catalysis CATALYSTS Condensed Matter Physics Copper Copper - chemistry Electrochemical Techniques Electrochemistry Lipid Bilayers - chemistry Lipids Materials Science MEMBRANES Nanotechnology Optical and Electronic Materials Oxidation-Reduction OXYGEN Oxygen - chemistry PHOSPHATES Protons Reduction Self-assembled monolayers Switches |
title | Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20switch%20for%20modulating%20oxygen%20reduction%20by%20a%20copper%20electrocatalyst%20embedded%20in%20a%20hybrid%20bilayer%20membrane&rft.jtitle=Nature%20materials&rft.au=Barile,%20Christopher%20J.&rft.date=2014-06-01&rft.volume=13&rft.issue=6&rft.spage=619&rft.epage=623&rft.pages=619-623&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3974&rft_dat=%3Cproquest_cross%3E1527326880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558804300&rft_id=info:pmid/24813418&rfr_iscdi=true |