Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane

Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2014-06, Vol.13 (6), p.619-623
Hauptverfasser: Barile, Christopher J., Tse, Edmund C. M., Li, Ying, Sobyra, Thomas B., Zimmerman, Steven C., Hosseini, Ali, Gewirth, Andrew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 6
container_start_page 619
container_title Nature materials
container_volume 13
creator Barile, Christopher J.
Tse, Edmund C. M.
Li, Ying
Sobyra, Thomas B.
Zimmerman, Steven C.
Hosseini, Ali
Gewirth, Andrew A.
description Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general. Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.
doi_str_mv 10.1038/nmat3974
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671576658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1527326880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAgiruugr9AAl70sJqvNu1RxC9Y0IOeS5pM1krbrEmK9t-bxVUWL54SmId3ZhiEjim5oIQXl32nIi-l2EFTKmQ-F3lOdjd_ShmboIMQ3ghhNMvyfTRhoqBc0GKK3JN30fU4fDRRv2LrPO6cGVoVm36J3ee4hB57MIOOTWL1iBXWbrUCj6EFHb3TKqp2DBFDV4MxYHDTJ_Q61r4xuG5aNSbcpapXPRyiPavaAEebd4Zebm-er-_ni8e7h-urxVyn0eJcWGaUFkoywwTTRBYgrSipKDinRJXEkLRWSayllmjNSiaZpWXJy5pZyAifobPv3JV37wOEWHVN0NC2aQY3hIrmkmYyz7Pif5oxyVleFOvU0z_0zQ2-T4sklSUhONnqrb0LwYOtVr7plB8rSqr1vaqfeyV6sgkc6g7ML_w5UALn3yCkUr8Ev9Xxb9gX7q2eNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558804300</pqid></control><display><type>article</type><title>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Barile, Christopher J. ; Tse, Edmund C. M. ; Li, Ying ; Sobyra, Thomas B. ; Zimmerman, Steven C. ; Hosseini, Ali ; Gewirth, Andrew A.</creator><creatorcontrib>Barile, Christopher J. ; Tse, Edmund C. M. ; Li, Ying ; Sobyra, Thomas B. ; Zimmerman, Steven C. ; Hosseini, Ali ; Gewirth, Andrew A.</creatorcontrib><description>Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general. Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3974</identifier><identifier>PMID: 24813418</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 639/301/299/886 ; Biomaterials ; Catalysis ; CATALYSTS ; Condensed Matter Physics ; Copper ; Copper - chemistry ; Electrochemical Techniques ; Electrochemistry ; Lipid Bilayers - chemistry ; Lipids ; Materials Science ; MEMBRANES ; Nanotechnology ; Optical and Electronic Materials ; Oxidation-Reduction ; OXYGEN ; Oxygen - chemistry ; PHOSPHATES ; Protons ; Reduction ; Self-assembled monolayers ; Switches</subject><ispartof>Nature materials, 2014-06, Vol.13 (6), p.619-623</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</citedby><cites>FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3974$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3974$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24813418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barile, Christopher J.</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sobyra, Thomas B.</creatorcontrib><creatorcontrib>Zimmerman, Steven C.</creatorcontrib><creatorcontrib>Hosseini, Ali</creatorcontrib><creatorcontrib>Gewirth, Andrew A.</creatorcontrib><title>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general. Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.</description><subject>132/122</subject><subject>639/301/299/886</subject><subject>Biomaterials</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Materials Science</subject><subject>MEMBRANES</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation-Reduction</subject><subject>OXYGEN</subject><subject>Oxygen - chemistry</subject><subject>PHOSPHATES</subject><subject>Protons</subject><subject>Reduction</subject><subject>Self-assembled monolayers</subject><subject>Switches</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LxDAQBuAgiruugr9AAl70sJqvNu1RxC9Y0IOeS5pM1krbrEmK9t-bxVUWL54SmId3ZhiEjim5oIQXl32nIi-l2EFTKmQ-F3lOdjd_ShmboIMQ3ghhNMvyfTRhoqBc0GKK3JN30fU4fDRRv2LrPO6cGVoVm36J3ee4hB57MIOOTWL1iBXWbrUCj6EFHb3TKqp2DBFDV4MxYHDTJ_Q61r4xuG5aNSbcpapXPRyiPavaAEebd4Zebm-er-_ni8e7h-urxVyn0eJcWGaUFkoywwTTRBYgrSipKDinRJXEkLRWSayllmjNSiaZpWXJy5pZyAifobPv3JV37wOEWHVN0NC2aQY3hIrmkmYyz7Pif5oxyVleFOvU0z_0zQ2-T4sklSUhONnqrb0LwYOtVr7plB8rSqr1vaqfeyV6sgkc6g7ML_w5UALn3yCkUr8Ev9Xxb9gX7q2eNw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Barile, Christopher J.</creator><creator>Tse, Edmund C. M.</creator><creator>Li, Ying</creator><creator>Sobyra, Thomas B.</creator><creator>Zimmerman, Steven C.</creator><creator>Hosseini, Ali</creator><creator>Gewirth, Andrew A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>H8G</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</title><author>Barile, Christopher J. ; Tse, Edmund C. M. ; Li, Ying ; Sobyra, Thomas B. ; Zimmerman, Steven C. ; Hosseini, Ali ; Gewirth, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-4f2dac4a72d242c078e7f491483310a90d012290ff1f0cc29272f19939b2fe503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>132/122</topic><topic>639/301/299/886</topic><topic>Biomaterials</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Materials Science</topic><topic>MEMBRANES</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation-Reduction</topic><topic>OXYGEN</topic><topic>Oxygen - chemistry</topic><topic>PHOSPHATES</topic><topic>Protons</topic><topic>Reduction</topic><topic>Self-assembled monolayers</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barile, Christopher J.</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sobyra, Thomas B.</creatorcontrib><creatorcontrib>Zimmerman, Steven C.</creatorcontrib><creatorcontrib>Hosseini, Ali</creatorcontrib><creatorcontrib>Gewirth, Andrew A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Copper Technical Reference Library</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barile, Christopher J.</au><au>Tse, Edmund C. M.</au><au>Li, Ying</au><au>Sobyra, Thomas B.</au><au>Zimmerman, Steven C.</au><au>Hosseini, Ali</au><au>Gewirth, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>13</volume><issue>6</issue><spage>619</spage><epage>623</epage><pages>619-623</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general. Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24813418</pmid><doi>10.1038/nmat3974</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2014-06, Vol.13 (6), p.619-623
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1671576658
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 132/122
639/301/299/886
Biomaterials
Catalysis
CATALYSTS
Condensed Matter Physics
Copper
Copper - chemistry
Electrochemical Techniques
Electrochemistry
Lipid Bilayers - chemistry
Lipids
Materials Science
MEMBRANES
Nanotechnology
Optical and Electronic Materials
Oxidation-Reduction
OXYGEN
Oxygen - chemistry
PHOSPHATES
Protons
Reduction
Self-assembled monolayers
Switches
title Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20switch%20for%20modulating%20oxygen%20reduction%20by%20a%20copper%20electrocatalyst%20embedded%20in%20a%20hybrid%20bilayer%20membrane&rft.jtitle=Nature%20materials&rft.au=Barile,%20Christopher%20J.&rft.date=2014-06-01&rft.volume=13&rft.issue=6&rft.spage=619&rft.epage=623&rft.pages=619-623&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3974&rft_dat=%3Cproquest_cross%3E1527326880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558804300&rft_id=info:pmid/24813418&rfr_iscdi=true