Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane
Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-06, Vol.13 (6), p.619-623 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular switches gate many fundamental processes in natural and artificial systems. Here, we report the development of an electrochemical platform in which a proton carrier switches the activity of a catalyst. By incorporating an alkyl phosphate in the lipid layer of a hybrid bilayer membrane, we regulate proton transport to a Cu-based molecular oxygen reduction reaction catalyst. To construct this hybrid bilayer membrane system, we prepare an example of a synthetic Cu oxygen reduction reaction catalyst that forms a self-assembled monolayer on Au surfaces. We then embed this Cu catalyst inside a hybrid bilayer membrane by depositing a monolayer of lipid on the self-assembled monolayer. We envisage that this electrochemical system can give a unique mechanistic insight not only into the oxygen reduction reaction, but into proton-coupled electron transfer in general.
Molecular switches regulate many fundamental processes in natural and artificial systems. An electrochemical platform in which a proton carrier switches the activity of a catalyst is now presented. A hybrid bilayer membrane allows the regulation of proton transport to a Cu-based molecular oxygen reduction reaction catalyst. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat3974 |