Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial
In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristo...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2014-07, Vol.77 (1-2), p.231-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-014-1286-4 |