Hausdorff dimension of quasi-cirles of polygonal mappings and its applications

We show that the Hausdorff dimension of quasi-circles of polygonal mappings is one. Furthermore, we apply this result to the theory of extremal quasiconformal mappings. Let [μ] be a point in the universal Teichmiiller space such that the Hausdorff dimension of fμ(δ△) is bigger than one. We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2013-05, Vol.56 (5), p.1033-1040
Hauptverfasser: Huo, ShengJin, Tang, ShuAn, Wu, ShengJian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Hausdorff dimension of quasi-circles of polygonal mappings is one. Furthermore, we apply this result to the theory of extremal quasiconformal mappings. Let [μ] be a point in the universal Teichmiiller space such that the Hausdorff dimension of fμ(δ△) is bigger than one. We show that for every kn ∈ (0, 1) and polygonal differentials δn, n = 1, 2, the sequence {[kn δn/|δn|} cannot converge to [μ] under the Teichmiiller metric.
ISSN:1674-7283
1006-9283
1869-1862
DOI:10.1007/s11425-012-4458-z