White and narrow band image compressor based on a new color space for capsule endoscopy

In this paper, we present the design of a low power and hardware efficient image compressor integrated circuit for wireless capsule endoscopy application. The proposed compression algorithm supports dual-band imaging, that is, works on both white-band imaging (WBI) and narrow-band imaging (NBI). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 2014-03, Vol.29 (3), p.345-360
Hauptverfasser: Khan, Tareq Hasan, Wahid, Khan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present the design of a low power and hardware efficient image compressor integrated circuit for wireless capsule endoscopy application. The proposed compression algorithm supports dual-band imaging, that is, works on both white-band imaging (WBI) and narrow-band imaging (NBI). The scheme uses a novel color-space and simple predictive coding for optimized performance. Based on the nature of the narrow-and white-band endoscopic images and video sequences, several sub-sampling schemes are introduced. The proposed dual-band compressor is designed in such as way that it can easily be interfaced with any commercial low power image sensor that outputs RGB image pixels in a raster scan fashion, eliminating the need of large buffer memory and temporary storage. Both NBI and WBI reconstructed images have been verified by medical doctors for acceptability. Compared to other designs targeted to video capsule endoscopy, the proposed algorithm performs strongly with a compression ratio of 80.4% (for WBI) and 79.2% (for NBI), and a high reconstruction peak-signal-to-noise-ratio (over 43.7 dB for both bands). The results of the fabricated chip are also presented.
ISSN:0923-5965
DOI:10.1016/j.image.2014.12.001