Void formation in diffusive lattice gases
What is the probability that a macroscopic void will spontaneously arise, at a specified time T, in an initially homogeneous gas? We address this question for diffusive lattice gases, and also determine the most probable density history leading to the void formation. We employ the macroscopic fluctu...
Gespeichert in:
Veröffentlicht in: | Journal of statistical mechanics 2012-12, Vol.2012 (12), p.P12014-30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | What is the probability that a macroscopic void will spontaneously arise, at a specified time T, in an initially homogeneous gas? We address this question for diffusive lattice gases, and also determine the most probable density history leading to the void formation. We employ the macroscopic fluctuation theory by Bertini et al and consider both annealed and quenched averaging procedures (the initial condition is allowed to fluctuate in the annealed setting). We show that in the annealed case the void formation probability is given by the equilibrium Boltzmann-Gibbs formula, so the probability is independent of T (and also of the void shape, as only the volume matters). In the quenched case, which is intrinsically non-equilibrium, we evaluate the void formation probability analytically for non-interacting random walkers and probe it numerically for the simple symmetric exclusion process. For voids that are small compared with the diffusion length , the equilibrium result for the void formation probability is recovered. We also re-derive our main results for non-interacting random walkers from an exact microscopic analysis. |
---|---|
ISSN: | 1742-5468 1742-5468 |
DOI: | 10.1088/1742-5468/2012/12/P12014 |