GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis

The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a class of transcription factors harboring a conserved plant-specific lateral organ boundaries domain and plays a key role in lateral organ development of plants. Recent studies have revealed developmental func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology 2014-03, Vol.171 (5), p.14-18
Hauptverfasser: Lee, Han Woo, Park, Jong Hwa, Park, Moung Yeon, Kim, Jungmook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encodes a class of transcription factors harboring a conserved plant-specific lateral organ boundaries domain and plays a key role in lateral organ development of plants. Recent studies have revealed developmental functions of some LBD genes in Arabidopsis, rice, and maize. We have shown previously that LBD18/ASL20 promotes the emergence of lateral roots in Arabidopsis. LBD18 induces EXPANSIN14 (EXP14) expression by binding to a specific region of the EXP14 promoter. To further understand the molecular mechanism of LBD18 acting as a transcription factor, we isolated a protein interacting with LBD18 by screening an Arabidopsis cDNA library using the yeast two-hybrid system with LBD18 as bait. We found that GBF INTERACTING PROTEIN1 (GIP1) interacts with LBD18 in yeast and Arabidopsis protoplasts. Reverse-transcription-polymerase chain reaction analysis showed overlapping expression of GIP1 and LBD18 in various tissues of Arabidopsis such as roots, aerial parts, and rosette leaves. Transient gene expression assay results with Arabidopsis protoplasts indicated that GIP1 enhances transcriptional activity of LBD18 in the EXP14 promoter fused to the GUS reporter gene. These results show that GIP1 may act as a transcriptional coactivator of LBD18.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2013.11.003